COMP 345 Week 3

Haotao Lai (Eric)
h_lai@encs.concordia.ca
http://laihaotao.me/ta

mailto:h_lai@encs.concordia.ca
http://laihaotao.me/ta

Parameter-Passing \

Parameter-Passing

e pass by value: copy the value, and pass the new copied value;
e pass by reference: create a new alias for that parameter and pass the alias;

e pass by pointer: get the address of the parameter and pass that address;

16
17
18
19
20
21
22
23
24
25
26

int main() {
int n = 100;

ol RR =

cout T+ — argument ———

cout << "====================

cout << "argument's address:

pass_by_value(n);
pass_by_reference(n);
pass_by_pointer(&n);

" << &n << endl;

" << endl;
" << endl;
" << endl;

parameter's
parameter's

parameter's
parameter's

address4 0x7f£f£f5f69e5dc
value: 1

parameter's
parameter's

address:
value: 1

L8x7fff5f69e5dc

28 // int integer = n
29 // create an new variable and assign it a value
30 void pass_by_value(int integer) {

31 cout << * === ——= " << endl;
32 cout << "============ pass by value ==============" << endl;
33 cout << " === === " << endl;
34 cout << "parameter's address: " << &integer << endl;

35 cout << "parameter's value: " << integer << endl;

36 }

37

38 // int &integer = n
39 // create an alias for variable n
40 void pass_by_reference(int &integer) {

41 cout << * === === " << endl;
42 cout << "=========== pass by reference ===========" << endl;
43 cout << * === === " << endl;
44 cout << "parameter's address: " << &integer << endl;

45 cout << "parameter's value: " << integer << endl;

46 }

47

48 // int *integer = &n
49 // create an int's pointer and set its value equal to variable n's address
50 void pass_by_pointer(int xinteger) {

51 cout << * === === " << endl;
52 Colt RR M pass by poin‘ter =mmmmmmm———=l g endl;
53 cout << * === === " << endl;
54 cout << "parameter's address: " << integer << endl;
55 cout << "parameter's value: " << xinteger << endl;

56 }

Difference between reference and pointer

. A pointer can be re-assigned any number of times while a reference cannot be re-seated after
binding.

. Pointers can point nowhere (NULL), whereas reference always refer to an object.

3. You can't take the address of a reference like you can with pointers.

4. There's no "reference arithmetics" (but you can take the address of an object pointed by a
reference and do pointer arithmetics on it as in &obj + 5).

—— from stackoverflow, know more click here

https://stackoverflow.com/questions/57483/what-are-the-differences-between-a-pointer-variable-and-a-reference-variable-in

Vector

Vector

e vector<T> in cpp likes List<T> in Java
e Vectors are sequence containers representing arrays that can change in size.

e know more about vector, go here

http://www.cplusplus.com/reference/vector/vector/

Iterators:
begin
end
rbegin
rend
cbegin !

cend !

crbegin !

crend !

Return
Return
Return
Return
Return
Return
Return

Return

iterator to beginning (public member function)

iterator to end (public member function)

reverse iterator to reverse beginning (public member function)
reverse iterator to reverse end (public member function)
const_iterator to beginning (public member function)

const_iterator to end (public member function)
const_reverse_iterator to reverse beginning (public member function)

const_reverse_iterator to reverse end (public member function)

10

Element access:
operator[] Access element (public member function)
at Access element (public member function)
front Access first element (public member function)
back Access last element (public member function)
data <! Access data (public member function)

Modifiers:

assign Assign vector content (public member function)

push_back Add element at the end (public member function)
pop_back Delete last element (public member function)

insert Insert elements (public member function)

erase Erase elements (public member function)

swap Swap content (public member function)

clear Clear content (public member function)

emplace <! Construct and insert element (public member function)

emplace_back ! Construct and insert element at the end (public member function)

. Example

// vector::begin/end
#include <iostream>
#include <vector>

int main ()
{
std: :vector<int> myvector;
for (int i=1; i<=5; i++) myvector.push back(i);

std::cout << "myvector contains:";

for (std::vector<int>::iterator it = myvector.begin() ; it != myvector.end(); ++it)
std::cout << ' ' << *it;

std::cout << '\n';

return 0;

Output:
myvector contains

Command Line Compile

N\

13

Command Line Compile

e Assume we have two classes: Student.cpp Student.h (Data) and StudentDriver.cpp (Entry)
e cd source_directory

e g++ -Cc Student.cpp

e g++ -Cc StudentDriver.cpp

e g++ -0 StudentExample Student.o StudentDriver.o

e ./StudentExample

14

\ELGHIE

15

\ELGHIE

e if you are working on a large project with 1000+ files

e of course you will compiler them one by one in command line
e you need to write a makefile

e make

e you will get your executable file

e want to know more about make and makefile, click here

16

https://www.gnu.org/s/make/manual/make.html

OCoOoONODULTAWNR

dtime
c+ dtime.cpp
h dtime.h

c+ dtimeDriver.cpp

makefile

makefile

CC=g++

make: dtime.o dtimeDriver.o
$(CC) —o dtime dtime.o dtimeDriver.o

dtime.o: dtime.cpp
$(CC) —c dtime.cpp

dtimeDriver.o: dtimeDriver.cpp
$(CC) -c dtimeDriver.cpp

clean:
rm dtime *.0

17

