COMP 345 Week 4

Haotao Lai (Eric)

h lai@encs.concordia.ca
http://laihaotao.me/ta

Graph

How can we represent a graph

How to traverse a graph

There are a lot of ways to do it, the most common two is DFS and BFS.
You are not restricted in this two ways, during your demo ! ! !

Take DFS as an Example

Recursion

```
DFS(G)
1 for each vertex }u\inG.
2 u.color = WHITE
3
    u.\pi = NIL
    time = 0
```



```
                        time just for timestamp
5 for each vertex }u\inG.
        if u.color == WHITE
7
        DFS-VISIT (G,u)
```


Recursion (continue)

```
DFS-VISIT(G,u)
    1 time = time + 1
    2 u.d = time
    3 u.color = GRAY
    4 for each v}\inG.Adj[u
    5 if v.color == WHITE
    6 v.\pi = u
    DFS-VISIT (G,v)
    u.color = BLACK
    9 time = time + }
    10 u.f = time
```

// white vertex u has just been discovered
// explore edge (u, v)
// blacken u; it is finished

Loop

```
dfs(G, v)
Set visited
Stack stack
stack.push(v)
while stack is no empty
    Stack s
    tmp = stack.pop()
    visited.add(tmp)
    for all vertex in G.Adj[tmp]
        if tmp is not in visited
            s.push(tmp)
    while s is not empty
        stack. push(s.pop())
```

// G is the graph, v is the vertex you want to begin
// visited keep tacking the vertices haven been discovered
// simulate the resursion
// try to discover the graph begins with v
// when you finish searching
Stack s
visited.add(
for all vertex in G.Adj[tmp]
if tmp is not in visited s.push(tmp)
while s is not empty stack. push(s.pop())

Let's do an example

Example 1 Undirected Graph

Example 2 Directed Graph

