COMP 345 Fall 18
Week 3

Lab Instructor

Section: B-X 9999 --W---- 20:30 22:20 H929
Name: Haotao Lai (Eric)

Office: EV 8.241

Email: h_lai@encs.concordia

Website: http://laihaotao.me/ta

http://laihaotao.me/ta

Assignment 1 (Dr. Paguet'’s section)

Reminder:

- Assignment 1is out since Sep 13

- Assignment 1 will be due on Oct 12 at 23:59

- You need to submit your assignment via EAS (one submission per team)

- Don’t try tofinish it one day before the due (probably you can’t make it on time)

Contents

- parameter passing
- vector
- graphtraversal algorithm

Parameter-Passing \

Parameter-Passing

- pass by value: copy the value, and pass the new copied value;
- pass by reference: create a new alias for that parameter and pass the alias;
- pass by pointer: get the address of the parameter and pass that address;

Parameter-Passing

#include <iostream>

using std::cout;
using std::endl;

int main() {

int n = 100;
Cout<<":::::::::::::::::"<<end1;
cout << "integer n: " << n << endl;
Cout<<":::::::::::::::::"<<end1;

pass_by_value(n);
pass_by_reference(n);
pass_by_pointer(&n);

return 0;

Parameter-Passing

void pass_by_value(int n) {
Cout<<":::::::::::::::::"<<end1;
cout << "pass by value" << endl;

cout << "value of n: " << n << endl;

cout << "address of n: " << &n << endl;

}

void pass_by_reference(int &n) {
Cout<<":::::::::::::::::"<<end1;
cout << "pass by reference" << endl;
cout << "value of n: " << n << endl;
cout << "address of n: " << &n << endl;

}

void pass_by_pointer(int *n) {

cout << "= == ========= === = ="' << endl;
cout << "pass by pointer" << endl;

cout << "value of n: " << *n << endl;

cout << "address of n: " << n << endl;

Parameter-Passing

Output from the program

integer n: 100
address of n in main: O@x7ffeee9f14c8

pass by value
value of n: 100
address of n: Ox7ffeeed9f145c

pass by reference
value of n: 100
address of n: Ox7ffeee9f14c8

pass by pointer
value of n: 100
address of n: Ox7ffeee9f14c8

Difference between reference and pointer

. A pointer can be re-assigned any number of times while a reference cannot be re-seated after
binding.

2. Pointers can point nowhere (NULL), whereas reference always refer to an object.

3. You can't take the address of a reference like you can with pointers.

4. There's no "reference arithmetics" (but you can take the address of an object pointed by a
reference and do pointer arithmetics on it as in &bj + 5).

—— from stackoverflow, know more click

10

https://stackoverflow.com/questions/57483/what-are-the-differences-between-a-pointer-variable-and-a-reference-variable-in

How to write a function that
can swap two integers?

N\

11

Parameter-passing

int main() A

int i = 10;

int j = 20;

cout << l':::::::::::"<<end]_,

cout << "before swap" << endl;

cout << "value of i: " << i << endl; // 10

cout << "value of j: " << j << endl; // 20

swap(i, j);

swap(&i, &j);

cout << l':::::::::::"<<end]_;

cout << "after swap" << endl;

cout << "value of i: " << i << endl; // expecting 20
cout << "value of j: " << j << endl; // expecting 10

12

Straight forward

void swapl1(int x, int y) {
int tmp = x;
X =Yy,
y = tmp;

void swap2(int &x, int &y) {
int tmp = Xx;
X =y,
y = tmp;

Which one is correct ?

void swap3(int *x, int *y) {
int tmp = #*Xx;
*X = *y'

*y = tmp;

void swap4(int *x, int *y) {
int *xtmp = Xx;
X =Y,
y = tmp;

Vector

15

Vector

e vector<T>in cpp likes List<T> in Java
e Vectors are sequence containers representing arrays that can change in size.

e know more about vector, go here

16

http://www.cplusplus.com/reference/vector/vector/

vector

#include <iostream>
#include <vector>

using std::vector;
using std::cout;
using std::endl;

int main() {
vector<int> vecInt;
// add elements into the vector
for (int i = 0; i < 10; i++) {
vecInt.push_back(i);
}

// traverse the vector

for (auto it = vecInt.begin(); it != vecInt.end(); it++) {
cout << it.operator*() << " ";

}

cout << endl;

// another way to traverse
for (auto &vec : vecInt) {
cout << vec << " ";

}

cout << endl;

// access via index

cout << "the 2nd element in the vector is -> " << vecInt[1] << endl;

// access the first and last element

cout << "the 1st element in the vector is -> " << vecInt.front() << endl;
cout << "the last element in the vector is -> " << vecInt.back() << endl;
/] ... try to discover more APIs by yourself

return 0;

Iterators:
begin
end

rbegin

rend
cbegin !
cend &
crbegin !

crend !

Return iterator to beginning (public member function)

Return iterator to end (public member function)

Return reverse iterator to reverse beginning (public member function)
Return reverse iterator to reverse end (public member function)

Return const_iterator to beginning (public member function)

Return const_iterator to end (public member function)

Return const_reverse_iterator to reverse beginning (public member function)

Return const_reverse_iterator to reverse end (public member function)

18

Element access:

operator[]
at

front

back

data &

Modifiers:
assign
push_back
pop_back
insert
erase
swap
clear

emplace !

emplace_back !

Access element (public member function)
Access element (public member function)
Access first element (public member function)
Access last element (public member function)
Access data (public member function)

Assign vector content (public member function)
Add element at the end (public member function)
Delete last element (public member function)
Insert elements (public member function)

Erase elements (public member function)

Swap content (public member function)

Clear content (public member function)

Construct and insert element (public member function)

Construct and insert element at the end (public member function)

vector

// erasing from vector
#include <iostream>
#include <vector>

int main () {
std: :vector<int> myvector;

for (int i=1; i<=10; i++) {
myvector.push_back(1i);

}

myvector.erase(myvector.begin() + 5);
myvector.erase (myvector.begin(), myvector.begin() + 3);

std::cout << "myvector contains:";

for (unsigned i=0; i<myvector.size(); ++i) {
std: :cout << ' << myvector[i];

}

std::cout << '\n';

return 0;

20

vector

// vector::emplace
#include <iostream>
#include <vector>

int main () {
std::vector<int> myvector = {10,20,30};

auto it = myvector.emplace(myvector.begin()+1, 100);
myvector.emplace (it, 200);
myvector.emplace (myvector.end(), 300);

std::cout << "myvector contains:";
for (auto& x: myvector) {

std: :cout << << X;

}

std::cout << '\n'

’

return 0;

21

beyond vector

C++ container library reference (you may need them for dfs or bfs implementation or you

assignment):

https://en.cppreference.com/w/cpp/container

22

https://en.cppreference.com/w/cpp/container

Graph

23

How can we represent a graph

real graph adjacency linked list

©

adjacency matrix

24

How to traverse a graph

There are a lot of ways to do it, the most common two is DFS and BFS.

You are not restricted in this two ways, during your demo ! !'!

25

Take DFS as an Example

N\

26

Recursion

DFS(G)
for each vertex u € G.V
u.color = WHITE —
u.m = NIL
time = (0 «—— timejust for timestamp
for each vertex u € G.V

if u.color == WHITE
DFS-VISIT(G, u)

white means the vertex hasn’t been
discovered yet

27

Recursion (continue)

DFS-VIsIT(G, u)

time = time + 1 // white vertex u has just been discovered
u.d = time
u.color = GRAY
for each v € G.Adj[u] // explore edge (u,v)
if v.color == WHITE
VT = U
DFS-VisIT(G,v)
u.color = BLACK // blacken u; it is finished
time = time + 1
u.f = time

|
2
3
4
5
6
7
8
9
0

[E—

28

Loop

dfs (G, V)
Set visited
Stack Stack
stack.push (v)

while stack is not empty
Stack s
tmp = stack.pop ()
visited.add (tmp)

for all vertex u in G.Adj[tmp]
if u is not in visited
AND u is not in stack
s .push (u)

while s is not empty
stack.push(s.pop())

29

\ Example T Undirected Graph

start here!

\ Example 2 Directed Graph

31

Question?

Ky

