
COMP 345 Fall 18
Week 3

Haotao Lai (Eric)
h_lai@encs.concordia.ca

1

Lab Instructor

Section: B-X 9999 --W---- 20:30 22:20 H929

Name: Haotao Lai (Eric)

Office: EV 8.241

Email: h_lai@encs.concordia

Website: http://laihaotao.me/ta

2

http://laihaotao.me/ta

Assignment 1 (Dr. Paquet’s section)

Reminder:

- Assignment 1 is out since Sep 13

- Assignment 1 will be due on Oct 12 at 23:59

- You need to submit your assignment via EAS (one submission per team)

- Don’t try to finish it one day before the due (probably you can’t make it on time)

3

Contents

- parameter passing

- vector

- graph traversal algorithm

4

Parameter-Passing

5

Parameter-Passing

- pass by value: copy the value, and pass the new copied value;

- pass by reference: create a new alias for that parameter and pass the alias;

- pass by pointer: get the address of the parameter and pass that address;

6

Parameter-Passing

#include <iostream>

using std::cout;
using std::endl;

int main() {
 int n = 100;
 cout << "= = = = = = = = = = = = = = = = =" << endl;
 cout << "integer n: " << n << endl;
 cout << "= = = = = = = = = = = = = = = = =" << endl;

 pass_by_value(n);
 pass_by_reference(n);
 pass_by_pointer(&n);

 return 0;
}

7

Parameter-Passing

void pass_by_value(int n) {
 cout << "= = = = = = = = = = = = = = = = =" << endl;
 cout << "pass by value" << endl;
 cout << "value of n: " << n << endl;
 cout << "address of n: " << &n << endl;
}

void pass_by_reference(int &n) {
 cout << "= = = = = = = = = = = = = = = = =" << endl;
 cout << "pass by reference" << endl;
 cout << "value of n: " << n << endl;
 cout << "address of n: " << &n << endl;
}

void pass_by_pointer(int *n) {
 cout << "= = = = = = = = = = = = = = = = =" << endl;
 cout << "pass by pointer" << endl;
 cout << "value of n: " << *n << endl;
 cout << "address of n: " << n << endl;
}

8

Parameter-Passing

Output from the program

= = = = = = = = = = = = = = = = =
integer n: 100
address of n in main: 0x7ffeee9f14c8
= = = = = = = = = = = = = = = = =
pass by value
value of n: 100
address of n: 0x7ffeee9f145c
= = = = = = = = = = = = = = = = =
pass by reference
value of n: 100
address of n: 0x7ffeee9f14c8
= = = = = = = = = = = = = = = = =
pass by pointer
value of n: 100
address of n: 0x7ffeee9f14c8

9

Difference between reference and pointer

—— from stackoverflow, know more click here

10

https://stackoverflow.com/questions/57483/what-are-the-differences-between-a-pointer-variable-and-a-reference-variable-in

How to write a function that
can swap two integers?

11

Parameter-passing

int main() {

 int i = 10;

 int j = 20;

 cout << "= = = = = = = = = = =" << endl;

 cout << "before swap" << endl;

 cout << "value of i: " << i << endl; // 10

 cout << "value of j: " << j << endl; // 20

 swap(i, j);

 swap(&i, &j);

 cout << "= = = = = = = = = = =" << endl;

 cout << "after swap" << endl;

 cout << "value of i: " << i << endl; // expecting 20

 cout << "value of j: " << j << endl; // expecting 10

} 12

Straight forward

void swap1(int x, int y) {

 int tmp = x;

 x = y;

 y = tmp;

}

void swap2(int &x, int &y) {

 int tmp = x;

 x = y;

 y = tmp;

}

13

Which one is correct ?

void swap3(int *x, int *y) {

 int tmp = *x;

 *x = *y;

 *y = tmp;

}

void swap4(int *x, int *y) {

 int *tmp = x;

 x = y;

 y = tmp;

}

14

Vector

15

Vector

● vector<T> in cpp likes List<T> in Java

● Vectors are sequence containers representing arrays that can change in size.

● know more about vector, go here

16

http://www.cplusplus.com/reference/vector/vector/

vector

#include <iostream>
#include <vector>

using std::vector;
using std::cout;
using std::endl;

int main() {
 vector<int> vecInt;
 // add elements into the vector
 for (int i = 0; i < 10; i++) {
 vecInt.push_back(i);
 }
 // traverse the vector
 for (auto it = vecInt.begin(); it != vecInt.end(); it++) {
 cout << it.operator*() << " ";
 }
 cout << endl;
 // another way to traverse
 for (auto &vec : vecInt) {
 cout << vec << " ";
 }
 cout << endl;
 // access via index
 cout << "the 2nd element in the vector is -> " << vecInt[1] << endl;
 // access the first and last element
 cout << "the 1st element in the vector is -> " << vecInt.front() << endl;
 cout << "the last element in the vector is -> " << vecInt.back() << endl;
 // try to discover more APIs by yourself
 return 0;
}

17

18

19

vector

// erasing from vector
#include <iostream>
#include <vector>

int main () {
 std::vector<int> myvector;

 for (int i=1; i<=10; i++) {
 myvector.push_back(i);
 }

 myvector.erase(myvector.begin() + 5);
 myvector.erase (myvector.begin(), myvector.begin() + 3);

 std::cout << "myvector contains:";
 for (unsigned i=0; i<myvector.size(); ++i) {
 std::cout << ' ' << myvector[i];
 }
 std::cout << '\n';

 return 0;
}

20

vector

// vector::emplace
#include <iostream>
#include <vector>

int main () {
 std::vector<int> myvector = {10,20,30};

 auto it = myvector.emplace(myvector.begin()+1, 100);
 myvector.emplace (it, 200);
 myvector.emplace (myvector.end(), 300);

 std::cout << "myvector contains:";
 for (auto& x: myvector) {
 std::cout << ' ' << x;
 }
 std::cout << '\n';

 return 0;
}

21

beyond vector

C++ container library reference (you may need them for dfs or bfs implementation or you
assignment):

https://en.cppreference.com/w/cpp/container

22

https://en.cppreference.com/w/cpp/container

Graph

23

How can we represent a graph

24

How to traverse a graph

There are a lot of ways to do it, the most common two is DFS and BFS.

You are not restricted in this two ways, during your demo ! ! !

25

Take DFS as an Example

26

Recursion

27

Recursion (continue)

28

Loop

29

dfs(G, v)
 Set visited
 Stack Stack
 stack.push(v)

 while stack is not empty
 Stack s
 tmp = stack.pop()
 visited.add(tmp)

 for all vertex u in G.Adj[tmp]
 if u is not in visited
 AND u is not in stack
 s.push(u)

 while s is not empty
 stack.push(s.pop())

Example 1 Undirected Graph

30

Example 2 Directed Graph

31

Question?

32

