

 COMP345:Tutorial 1

Winter 2017

Typical C++ Development

Environment

 C++ systems generally consist of three parts: a

program development environment, the language

and the C++ Standard Library.

 C++ programs typically go through six phases:

edit, preprocess, compile, link, load and execute.

Typical C++ Development

Environment (Cont.)

 Phase 1 consists of editing a file with an editor

program, normally known simply as an editor.

-Type a C++ program (source code) using the editor such as

Visual studio or eclipse.

-Make any necessary corrections.

-Save the program.

-C++ source code filenames often end with the .cpp, .cxx,

.cc or .C extensions (note that C is in uppercase) which

indicate that a file contains C++ source code.

Typical C++ Development

Environment (Cont.)

 In phase 2, you give the command to compile the

program.

-A preprocessor program executes automatically

before the compiler’s translation phase begins

(so we call preprocessing Phase 2 and compiling

Phase 3).

-The C++ preprocessor obeys commands called

preprocessing directives, which indicate that

certain manipulations are to be performed on the

program before compilation.

Typical C++ Development

Environment- preprocessor phase

Typical C++ Development

Environment (Cont.)

 In Phase 3, the compiler translates the C++

program into machine-language code—also

referred to as object code.

Typical C++ Development

Environment- compilation phase

Typical C++ Development

Environment (Cont.)

 Phase 4 is called linking.

-A linker links the object code with the code for the

missing functions to produce an executable

program.

-If the program compiles and links correctly, an

executable image is produced.

Typical C++ Development

Environment- linking phase

Typical C++ Development

Environment (Cont.)

 Phase 5 is called loading.

-Before a program can be executed, it must first be

placed in memory.

-This is done by the loader, which takes the

executable image from disk and transfers it to

memory.

-Additional components from shared libraries that

support the program are also loaded.

Typical C++ Development

Environment- loading phase

Typical C++ Development

Environment (Cont.)

 Phase 6: Execution

-Finally, the computer, under the control of its

CPU, executes the program one instruction at a

time.

-Some modern computer architectures can execute

several instructions in parallel.

Typical C++ Development

Environment- execution phase

First Run of Eclipse

After installing eclipse, you should be able to run it.

Immediately after that, Eclipse will ask you for your workspace

location. It defaults to a place within your personal settings. It is a

good idea to use the default workspace, you may want to note

where it is located.

If you always want to use the same workspace, you may select the

Use this as the default... and you'll never have to worry about

workspaces again. This is usually a good idea once you've used

Eclipse for a while. Finally Eclipse starts up with the welcome

screen:

And if you select the "Go to the workbench" (the backward arrow) on

the right, then you are inside Eclipse.

 If you downloaded the "Eclipse IDE for C/C++

Developers" you can skip the next section and go

straight to the section called “Configuring the

CDT”.

 If you have downloaded a different package, there

are additional tools needed to start programming.

We want to develop in C++, so we will continue

with the next section.

In the "Help" menu select "Install New Software..."

Installing the CDT

This will show you the list of available software update sites. CDT is part of the

standard release, so you can select an update site matching your eclipse version.

Please note: It is important to install the right Version of CDT for your version of

eclipse; for example:

-For Eclipse 3.7 (Indigo): Use http://download.eclipse.org/tools/cdt/releases/indigo

-For Eclipse 3.6 (Helios): Use http://download.eclipse.org/tools/cdt/releases/helios

-For Eclipse 3.5 (Galileo): Use http://download.eclipse.org/tools/cdt/releases/galileo

When you have found the CDT site, it will give you two entries:

CDT Main Features and CDT Optional Features. Expand both,

and find the latest version of the CDT. Make sure you select at

least the following:

C/C++ Development Tools

C/C++ GNU Toolchain Build Support

C/C++ GNU Toolchain Debug Support

C/C++ Development Platform

Do not select all items! Some of these require dependencies from other projects,

which may not be installed and thus fail to install. Select only the features you need!

The select "Next..."

And accept the license agreement with "Finish".

Downloading and installing will take a while.

Once its done it will ask you to restart Eclipse.

This is a good idea, so select "Yes".

Once Eclipse has restarted you may need to configure it for your computer.

Hello, World!

Once you are in Eclipse, you are given an empty workspace. You now have to

start a new project. To do so, select "File" / "New" / "Project...". Expand the

section "C++" and select "C++ Project", then click "Next >".

On the next screen, you have to give your project a name. In this

case, it will be "HelloWorld", however, you may use any name

you like. Also, you have to select a toolchain.

For Windows, select "MinGW GCC"

For Linux, select "Linux GCC"

For Mac OS X, select "MacOSX GCC“

Do not use "Cross GCC"! Unfortunately this option may be

selected by default if you create an empty project!

The next screen contains some Basic settings. Fill in what you like:

Eclipse will now generate a few things, and then ask you if you want to switch to

the C/C++ Perspective. This is a good idea, so say yes.

Great. You have a project now, and it does contain some sample code! You will

immediately get an editor window for your project. Eclipse will also auto-build

your project every time you save.

Make sure "Build Automatically" is enabled

If you turn off autobuild, you have to click the "build" button on the toolbar

If eclipse does not auto-build, you have to turn on "build automatically" in the

Project Menu, or click the "Build All" button after every change.

Example Hello World application

Now here comes the tricky part: On the left pane, select "C/C++ Projects",

expand "Binaries" and you should see and executable (HelloWorld.exe on

Windows). Now right-click that executable, and select "Run" / "Run Local

C/C++ Application". If everything goes well your output will be in the bottom

right window in the "Console" tab and it should say "Hello, World".

Running the example Hello World application

Visual Studio
 Open Microsoft Visual Studio.

 To create a new project, you can either click the menu item:

File >> New >> Project or press Ctrl + Shift + N.

Typing Program Code

Right Click the Source Files option from Right pane

(Solution Explorer) >> Select option Add >> Source Files >> New Item

Once you have used either one of the options mentioned above, the Add New

Item dialog box will appear. In the right pane, select C++ File (.cpp).

Click the Add button to enter the edit mode.

Executing Your Program

Once your program has been typed, the next step is to see if it works.

To execute your program, click the menu item

Debug >> Start Without Debugging.

The following message box will appear:

If your program has no code errors, you will see the following screen:

Example:

#include <iostream> // allows program to output data to the screen

using namespace std;

int main()

{

cout << “Hello World!”;

cout << endl;

return 0;

}



//: is a single-line comment

#include <iostream>: is a preprocessor directive.

This line notifies the preprocessor to include in the program the

contents of the input/output stream header <iostream>.
(Lines that begin with # are processed by the preprocessor before the program

is compiled.)

int main() is a part of every C++ program. C++ programs begin

executing at function main.

return 0; indicate that program ended successfully

using namespace std; shows that we are using a name, such as cin

and cout, that belongs to “namespace” std

cin, cout and cerr

- Certain C++ functions take their input from cin (the

standard input stream; pronounced “see-in”), which is

normally the keyboard, but cin can be redirected to

another device.

- Data is often output to cout (the standard output stream;

pronounced “see-out”), which is normally the computer

screen, but cout can be redirected to another device.

- Data may be output to other devices, such as disks and

hardcopy printers.

- There is also a standard error stream referred to as cerr.

The cerr stream is used for displaying error messages.

Example:

Define a class with the name ‘GradeBook’ with a

member function ‘displayMessage’, and creating a

GradeBook object, then call its displayMessage

function.

Define two files :

Gradebook.h to place the class

main.cpp which uses class GradeBook

37

// GradeBook class definition in a separate file from main

#include <iostream>

#include <string> //class GradeBook uses C++ standard string class

using namespace std;

// GradeBook class definition

class GradeBook

{

public:

// constructor initializes courseName with string supplied as argument

GradeBook(string name)

{

setCourseName(name); // call set function to initializes courseName

}

//function to set the courseName

void setCourseName(string name)

{

courseName=name; // store the course name in the object

} // end function setCourseName

//function to get the courseName

string getCourseName()

{

return courseName; //return object's courseName

} // end function getCourseName

// display a welcome message to the GradeBook user

void displayMessage()

{

// call getCourseName to get the courseName

cout << "Welcome to the grade book for\n"<<getCourseName()<< "!"<<endl;

} //end function displayMessage

private:

string courseName; // courseName for this GradeBook

}; // end class GradeBook

GradeBook.h

main.cpp

#include <iostream>

#include "GradeBook.h" //include definition of class

GradeBook

using namespace std;

//function main begins program execution

int main()

{

//create two GradeBook objects

GradeBook Gradebook1("COMP 352");

GradeBook Gradebook2("COMP 345");

//display initial value of courseName for each GradBook

cout << "Gradebook1 created for course: " <<

Gradebook1.getCourseName()

<< "\nGradebook1 created for course: " <<

Gradebook2.getCourseName()

<<endl;

}// end main

Good Luck

and

Enjoy your programming

