
Smart Pointer in C++

Presenter: Haotao Lai (Eric)
Contact: haotao.lai@gmail.com

Table of Content

- unique_ptr

- shared_ptr

- week_ptr

- auto_ptr (discarded)

What Smart Pointer can do ?

Basically, solve two problems:

- Dangling Pointer Problem

- Memory Leak Problem

Dangling Pointer

Several pointer-variables point the the same object, at some point, the object get deleted via

one of the pointer, but the rest don’t know, keep manipulating the object.

object p1
p2
p3

Example code:

delete p3;
// do something with p1 or p2

Memory Leak

You allocate a piece of memory, but for some reasons, you never release it.

Example code:

int foo() {
 int *i_ptr = new int(1);
 If (*i_ptr == 1) {
 // memory leak occurs, forget to delete
 return 2;
 }
 delete i_ptr;
 Return 0;
}

Solution is Smart Pointer

Requirements

Smart Pointer comes into C++ in C++11 (or known as C++0x). The auto_ptr was introduced

since C++98 but now it is discarded.

Want to use smart pointer, you need to include a header file named “memory”:

#include <memory>

Also for older version compiler, you may need to specify the flag:

“-std=c++11” or “-std=c++0x”

What is Smart Pointer

An object that overloads the pointer-related operator which allows you to treat this object as a

pointer (syntax equivalence). Remember, smart pointer is an object, not a “real raw pointer”.

The main purpose is to free the programmer from being worried about the dynamic allocated

memory.

Point.h

#include <iostream>

using std::cout;
using std::endl;

class Point {
public:
Point(int x=0, int y=0) : x(x), y(y) {
 cout << "Point(" << x << ", " << y << ") is created." << endl;
}
~Point() {
 cout << "Point(" << x << ", " << y << ") is destroyed." << endl;
}
void toString() {
 cout << "Point(" << x << ", " << y << ")" << endl;
}
private:
 int x, y;
};

auto_ptr

Already be discarded, never try to use it any more.

Take an example, the following program will crash.

int funcError(auto_ptr<Point> p) {
 // do something with p
}

int main() {
 auto_ptr<Point> p(new Point(1, 1));
 funcError(p);
 p->toString(); // program will crash here
 return 0;
}

Why crash?

Since the ownership of p has been
transferred to funcError and the
pointer got deleted when it ran out of
scope after funcError finish executing

auto_ptr

Already be discarded, never try to use it any more.

Other limitations:

- Cannot point to an array

- Cannot work with container

unique_ptr

You can imagine “unique_ptr” is designed to substitute the “auto_ptr”. It always guarantee that

at anytime one resource will only be pointed by one unique_ptr pointer. Once the

pointer-variable runs out of scope the resource will be deallocate.

Example usages:

unique_ptr<int> uptr(new int);

unique_ptr<int[]> uptr(new int[5]);

unique_ptr doesn’t support assignment and copy semantics, it only has “move semantic”. Also,

there is no pointer increment or decrement operation with unique_ptr.

unique_ptr

An wrong example:

int func(unique_ptr<Point> p) {
 // do something with p
}

int main() {
 unique_ptr<Point> p(new Point(1, 1));

 // the following line is
 // invalid, cannot be copied
 func(p)；

 return 0;
}

An correct example:

int func(unique_ptr<Point>& p) {
 // do something with p
}

int main() {
 unique_ptr<Point> p(new Point(1, 1));
 func(p)；
 return 0;
}

unique_ptr

It cannot be copied, but can be moved (to transfer) the ownership (of the object).

shared_ptr

shared_ptr is a smart pointer that retains shared ownership of an object through a pointer.

Several shared_ptr objects may own the same object.

The object will get deleted when the “ref count” go down to 0 inside the control block.

shared_ptr

How reference counter work?

- When a new shared_ptr point to the same object, counter plus one

- When a copy of the shared_ptr happens, counter plus one

- When a shared_ptr variable out of scope, counter minus one

shared_ptr

Example usage

#include <memory>
#include <iostream>

using std::cout;
using std::endl;
using std::shared_ptr;

int fun(shared_ptr<int> ptr) {
 cout << "[fun] object 100 reference count: " << ptr.use_count() << endl;
 return 0;
}
shared_ptr<int> create() {
 shared_ptr<int> ptr(new int(50));
 cout << "[create] object 50 reference count: " << ptr.use_count() << endl;
 return ptr;
}
int main(int argc, char const *argv[]) {
 shared_ptr<int> ptr1(new int(100));
 shared_ptr<int> ptr2 = ptr1;
 fun(ptr1);
 cout << "[main] object 100 reference count: " << ptr1.use_count() << endl;
 shared_ptr<int> ptr3 = create();
 cout << "[main] object 50 reference count: " << ptr3.use_count() << endl;
 return 0;
}

shared_ptr

I will say shared_ptr is the most common use smart pointer in reality development. But there will

be a problem when circular dependencies occurs. If that is the case, the reference count will

never go down to 0 which means the pointing object will never be deleted.

class A {

public:

　　shared_ptr m_b;

};

class B {

public:

　　shared_ptr<A> m_a;

};

weak_ptr

weak_ptr models temporary ownership: when an object needs to be accessed only if it exists,

and it may be deleted at any time by someone else, weak_ptr is used to track the object, and it is

converted to shared_ptr to assume temporary ownership. If the original shared_ptr is destroyed

at this time, the object's lifetime is extended until the temporary std::shared_ptr is destroyed as

well.

In addition, weak_ptr is used to break circular references of shared_ptr.

weak_ptr

#include <iostream>
#include <memory>

std::weak_ptr<int> gw;

void observe() {
 std::cout << "use_count == " << gw.use_count() << ": ";
 if (auto spt = gw.lock()) { // Has to be copied into a shared_ptr before usage
 std::cout << *spt << "\n";
 }
 else {
 std::cout << "gw is expired\n";
 }
}

int main() {
 {
 auto sp = std::make_shared<int>(42);
 gw = sp;

 observe();
 }
 observe();
}

