Smart Pointer in C++

Presenter: Haotao Lai (Eric)
Contact: haotao.lai@gmail.com

Table of Content

unique_ptr
shared_ptr
week_ptr

auto_ptr (discarded)

\ What Smart Pointer can do ?

Basically, solve two problems:

Dangling Pointer Problem
Memory Leak Problem

Dangling Pointer

Several pointer-variables point the the same object, at some point, the object get deleted via
one of the pointer, but the rest don’t know, keep manipulating the object.

Example code:

delete p3;
/I do something with p1 or p2

Memory Leak

You allocate a piece of memory, but for some reasons, you never release it.

Example code:

int foo() {

int *i_ptr = new int(1);

If (*i_ptr == 1) {
// memory leak occurs, forget to delete
return 2;

}

delete i_ptr;

Return 0;

Solution is Smart Pointer \

Requirements

Smart Pointer comes into C++ in C++11 (or known as C++0x). The auto_ptr was introduced
since C++98 but now it is discarded.

Want to use smart pointer, you need to include a header file named “memory”:
#include <memory>
Also for older version compiler, you may need to specify the flag:

“-std=c++11" or “-std=c++0x"

What is Smart Pointer

An object that overloads the pointer-related operator which allows you to treat this object as a
pointer (syntax equivalence). Remember, smart pointer is an object, not a “real raw pointer”.

The main purpose is to free the programmer from being worried about the dynamic allocated
memory.

Point.n

#include <iostream>

using std::cout;
using std::endl;

class Point {
public:
Point(int x=0, int y=0) : x(x), y(y) {

cout << "Point(" << x << << y << ") is created." << endl;
}
~Point() {

cout << "Point(" << x << ", " <<y << ") is destroyed." << endl;
}
void toString() {

cout << "Point(" << x <<
}
private:

int x, y;

, <<y << ")" << endl;

b

auto_ptr

Already be discarded, never try to use it any more.

Take an example, the following program will crash.

int funcError(auto_ptr<Point> p) {
// do something with p
}

int main() {
auto_ptr<Point> p(new Point(1, 1));
funcError(p);
p->toString(); // program will crash here
return 0;

Why crash?

Since the ownership of p has been
transferred to funcError and the
pointer got deleted when it ran out of
scope after funcError finish executing

auto_ptr

Already be discarded, never try to use it any more.
Other limitations:

- Cannot point to an array
- Cannot work with container

uniqgue_ptr

You can imagine “unique_ptr” is designed to substitute the “auto_ptr”. It always guarantee that
at anytime one resource will only be pointed by one unique_ptr pointer. Once the
pointer-variable runs out of scope the resource will be deallocate.

Example usages:

unique_ptr<int> uptr(new int);

unique_ptr<int[]> uptr(new int[5]);

unique_ptr doesn’t support assignment and copy semantics, it only has “move semantic”. Also,
there is no pointer increment or decrement operation with unique_ptr.

uniqgue_ptr

An wrong example:

int func(unique_ptr<Point> p) {
// do something with p

}

int main() {
unique_ptr<Point> p(new Point(1, 1));

// the following line is
// invalid, cannot be copied

func(p) ;

return 0;

An correct example:

int func(unique_ptr<Point>& p) {
// do something with p

}

int main() {
unique_ptr<Point> p(new Point(1, 1));
func(p) ;
return 0;

uniqgue_ptr

It cannot be copied, but can be moved (to transfer) the ownership (of the object).

auto ptrA = make_unique<Song>(L"Diana Krall®, L*The Look of Love");

ptrA _ Song object

auto pirB = std::move(ptrA);

ptraA f Song object
ptr8

shared_ptr

shared_ptr is a smart pointer that retains shared ownership of an object through a pointer.
Several shared_ptr objects may own the same object.

The object will get deleted when the “ref count” go down to O inside the control block.

Diagram 1 Control Block Diagram 2 Control Block
Ref count = 1 Ref count = 2

ptr to object MyClass ptr to object MyClass

Ptr to control block Ptr to control block

ptr to object
Ptr to control block

shared_ptr

How reference counter work?

- When a new shared_ptr point to the same object, counter plus one
- When a copy of the shared_ptr happens, counter plus one
- When a shared_ptr variable out of scope, counter minus one

shared_ptr

Example usage

#include <memory>
#include <iostream>

using std::cout;
using std::endl;
using std::shared_ptr;

int fun(shared_ptr<int> ptr) {
cout << "[fun] object 100 reference count:
return 0;

<< ptr.use_count() << endl;

}

shared_ptr<int> create() {
shared_ptr<int> ptr(new int(50));
cout << "[create] object 50 reference count: " << ptr.use_count() << endl;
return ptr;

}

int main(int argc, char const *argv|[])
shared_ptr<int> ptri1(new int(100));
shared_ptr<int> ptr2 = ptri;
fun(ptrl);
cout << "[main] object 100 reference count:
shared_ptr<int> ptr3 = create();
cout << "[main] object 50 reference count: " << ptr3.use_count() << endl;
return 0;

{

<< ptri1.use_count() << endl;

shared_ptr

| will say shared_ptr is the most common use smart pointer in reality development. But there will
be a problem when circular dependencies occurs. If that is the case, the reference count will
never go down to O which means the pointing object will never be deleted.

class A {
public:
shared_ptr m_b;

class B {
public:

shared_ptr<A> m_a;

weak_ptr

weak_ptr models temporary ownership: when an object needs to be accessed only if it exists,
and it may be deleted at any time by someone else, weak_ptr is used to track the object, and it is
converted to shared_ptr to assume temporary ownership. If the original shared_ptr is destroyed
at this time, the object's lifetime is extended until the temporary std::shared_ptr is destroyed as
well.

In addition, weak_ptr is used to break circular references of shared_ptr.

weak_ptr

#include <iostream>
#include <memory>

std: :weak_ptr<int> gw;

void observe() {
std::cout << "use_count == " << gw.use_count() << ;
if (auto spt = gw.lock()) { // Has to be copied into a shared_ptr before usage
std::cout << *spt << "\n"

)

}
else {
std::cout << "gw is expired\n";
}
}
int main() {
{
auto sp = std::make_shared<int>(42);
gw = sSp;
Output:
observe();
} .4
observe(): use_count 1: 42

use_count 0: gw is expired

