COMP 442 [6421
Compiler Design

Tutorial T
Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca

Jashanjot Singh s_jashan@cs.concordia.ca

An useful tool --- AtoCC

The learning environment can be of use in teaching abstract automata, formal languages, and
some of its applications in compiler construction. From a teacher's perspective AtoCC aims to
address a broad range of different learning activities forcing the students to actively interact
with the subjects being taught.

Note: We will need to use it for assignment 2 for grammar verification (will explain into detail
when you receive assignment 2)

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

AtoCC --- RegExp Edit

It is a powerful tool that we can use to generate DFA from regular expression and validate your
work. In the following slides you will find screenshots on how to use this tool in order to create a
DFA from a regular expression that should conform to the lexical specification of the language.

File Help

Y
* H 2 &
Open Save Export Automaton Export Grammar

Alphabet | RegExp | Simulation |

ReEExE

RegExp Project:

‘:’ l Introduction Wizard A guick introduction to get in touch with RegExpEdit.

O New RegExp Create an empty project.
Getting Help:
L) Online FAQ To get any further information visit the Online Help Center.

@ www.AtoCC.de Visit the AtoCC website.

Genesis-X7 Software 2008

¥ Y
0 2 H % o &
New Open Save Export Automaton Export Grammar

egExp] Simulation]

ReqExp
A' . habet _Alphabet [tems: [Clear

digital
Edit Alphabet:

letter

[x8] Add Alphabet ltem

2 Delete Alphabet ltem

<%z Predefined Alphabet

<< Back Mext 252

Genesis-X7 Software 2008

File Help
0D 2 W » . ¥

New Open Save Export Automaton Export Grammar

RegExp Editor | Alphabe | simutation |

ReEE E
-

Enter RegExp here

[letter(letter+digital)* y o
USE ﬂ e |orma HOEEIOI'I ior reqgular expressions.

Like: (a+b)*abla+b)* for L = {w | w contains ab} over {a,b}.

Minimized RegExp

|Iettertdigital+letter]'

Compare RegExp with another

| ‘_] Compare

Transform to NEA

Generate NEA graph for your RegExp at the right. Show NEA @

Hint: For & you must write EPSILON in vour RegExp.

RegExp
MEA Graph Minimized NEA Graph

Start latter

digital letter

gu=ug=u|e*=¢ |utv=vtu |ptu=u (©F)* =u* u(vtw) = wvtuw (ov)*a = a(va)* || (o+v)* = (0" + v5)*

Genesis-X7 Software 2008

E RegExpEdit [C:\Users\h_lai\Desktophtl.xmi] o

File Help
0D 2 W > . ¥

New Open Save Export Automatol Export Grammar
RegExp Editor | Alphabet | RegExp] simufiton |

ReEE E _

Enter RegExp here NEA Graph Minimized NEA Graph

|:a+b]*abb

Usze the formal notation for regular expressions.
Like: (a~b)*abla+b)* for L = {w | w contains ab} over {a,b}.

Minimized RegExp

|:a+b]'abb

Compare RegExp with another

| ‘_] Compare

Transform to NEA
Generate NEA graph for your RegExp at the right. Show NEA @

Hint- For & you must write EPSILON in vour RegExp.

gu=ug=u|e*=¢ wtv=vtu jptu=u |(8F)* =uv* u(vtw) = wvtuw (ov)*u = a(va)* || (o+v)* = (@* + v5)*

Genesis-X7 Software 2008

gﬁ AutoEdit [C\Users\h_lai\Desktop'tLl.xmi]

File Help

0 2 H| 9 > ¥ >
Hew Open Save Undo Notepad Export Grammar Export RegExp Export Compiler

Automaton Editor] Type] Alphabet] Transition Table] Transition Graph | Publish

AutoEdit

Simulation:

Edit Simulation settings:
Input:
bbbbaab L7)
[8 Start Simula
Speed:

—

I Single Step

2 Export Scheme Code

Configuration sequence l Check multiple input]

Cnnﬁgu ration sequeme

OOOOOOQO

bbbbaab | bbbaab |bbasb |baab | aab

<<l Back

Genesis-#7 Software 2004 - 2008

gﬁ AutoEdit [C\Users\h_lai\Desktop'tLl.xmi]
File Help

0 2 H| 9 > ¥ >
Hew Open Save Undo Notepad Export Grammar Export RegExp Export Compiler

Automaton Editor] Type] Alphabet] Transition Table] Transition Graph | Publish

AutoEdit - \

Edit Simulation settings:

Input:

b

Bbbhaabh (%) @
Fa Start Simulation \ a
b

Speed:
———

I Single Step

2 Export Scheme Code

Configuration sequence l Check multiple input]

Cnnﬁgu rati:m sequeme

OOOOQQOOO‘

bbbbasbb | bbbasbh | bbasbb |basbb | asbb | abb | bl

<<l Back

Genesis-#7 Software 2004 - 2008

Automaton Editor] Type] Alphabetl Transition Table | Transition Graph Publish | simulation

AutoEdit

HTML Publish:

Automaton
Type: NEA
ke Change Font Transition Graph:

Edit Publish settings:

Start letter

& Export Definition ... digit,letter

¥

gy Export Graph ...

¥ ot fransiions - pefinition: M = ({qoq}.{digit letter},5,0,{q 1)

& Exportas HTML Transition Table:

o | digit lefter

qo | O {ag4
a: [{a+} {q}

Grammar: G = (N,T,P,s)
G = ({90,912}, {digit,letter},P,qa)
P=A1

go - > letter gy | letter
qi ->= digit g1 | digit | letter g1 | letter

RegExp: letter{digit+letter)™

AtoCC Format

In assignment 2, you will have to use AtoCC to verify your grammar. For example, you will enter
your grammar in the kfgEdit tool like this (simple grammar shown):

T2 6 Edit
File Help
0 2 H i o > [

New Open Save | Validate Grammar is re-gular? Export Automaton Export Compiler

kfG Edit | Language Derivation | LL{1) conditions | Definition |

kfG Edit

Define Grammar

.Edit: m ._Ij _j Insert: ,‘.:‘_.j, 21 Format: E| E| Transform: CNF E%{ a 5% | Panels: Dﬂ

Grammar

1E -> '('E')' E1 | 'id' E1
Z2E1 -> EPSILON | '+' E

Continued --- AtoCC Format

Then, one very convenient thing that this tool allows is to verify a string against the grammar, by
inputting a string in the "input sentence" field in the Derivation tab window (see the image in the
next page)

This allows the tool to verify if this string is parsable or not, and if it doesn’t generate a tree and a
derivation for it. What | want the lexical analyzer to output is a string that you can copy in
the"input sentence" box. This way, you can verify if your grammar is correct by using your lexical
analyzer to output a string representing the token stream, and the kfgEdit tool to verify that you
grammar can parse it.

12

File Help
O =2 H ® P e >

New Open Save Validate Grammar is regular ? Export Automaton Export Compiler

KTG Edit | Language | Grammar Derivation | LL(1) conditions | Definition |

kfG Edit

Input Sentence: |[LEieale)] j e :"; 1 lij e | @ @ k}r B~ ‘-.LJ =
Derivation Tree Derivation

Zoom: [1wew - | [id] (=) id) (=] (1) id))] sentencial form used rule
E E -> id E1
id El -> + E
id E -> id E1
id Bl K
id E > (E) E1
id E —> id E1
id El -> EPSILON
id El -> EPSILON
id

=

B R e S

Implementation of lexical analyzer

Two ways to implement the lexical analyzer:

1. Tabledriven (but constructing a transition table by hand is not an easy job)
2. Handwritten (it require you to be very careful considering all the possible situations)

Note: It is your choice to pick one of the methods to implement and your choice will not affect
the prospective assignments. The output of the Scanner is the stream of tokens which can be
accessed when the nextToken() method being called.

14

Continued --- Implementation

e Youneed to think about the ambiguity problem (you should already know that the
solution is i.e. backtracking) and how to implement a backtracking mechanism.

e Alsothereis an advanced problem, how to make the lexical analyzer faster (read each
character from the disk when you need a new one or there is some other ways to do it)?

15

Continued --- Implementation

Obviously, we need to use buffers instead of reading when necessary, and there are two ways
provided by the “Dragon book” (its real name is Compilers: Principles, Techniques, and Tools):

1. Bufferin Pair
2. Sentinel

You can refer to the book in order to know more about these ways and how they can be
leveraged in your project work. Although, you can have your own way to implement that.

16

https://www.amazon.ca/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811/ref=sr_1_1?ie=UTF8&qid=1516647700&sr=8-1&keywords=compiler+principles+techniques%2C+and+tools

Buffer in Pair

lexemeBegin

Involves two buffers that are alternately reloaded, Each buffer is of the same size N, and N is
usually the size of a disk block, e.g., 4096 bytes.

we see forward has passed the end of the next lexeme, ** (the Fortran exponentiation operator),
and must be retracted one position to its left.

17

Continued --- Buffer in Pair

Two pointers to the input are maintained:

1. Pointer lexemeBegin, marks the beginning of the current lexeme, whose
extent we are attempting to determine.

. Pointer forward scans ahead until a pattern match is found; the exact
strategy whereby this determination is made will be covered in the balance

of this chapter.

18

Sentinel

L e =] ettt e |]]] e

I forward
lexemeBegin

switch (*forward++) {
case eof:

if (forward is at end of first buffer) {
reload second buffer;
forward = beginning of second buffer;

}

else if (forward is at end of second buffer) {
reload first buffer;
forward = beginning of first buffer;
b
else /* eof within a buffer marks the end of input */
terminate lexical analysis;
break;
Cases for the other characters

19

Thanks!

You are not allowed to use any tool like Lex can generate
a Scanner automatically.

20

