
COMP 442 / 6421
Compiler Design
 Tutorial 1

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca
 Jashanjot Singh s_jashan@cs.concordia.ca

1

An useful tool --- AtoCC

The learning environment can be of use in teaching abstract automata, formal languages, and

some of its applications in compiler construction. From a teacher's perspective AtoCC aims to

address a broad range of different learning activities forcing the students to actively interact

with the subjects being taught.

Note: We will need to use it for assignment 2 for grammar verification (will explain into detail

when you receive assignment 2)

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

2

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

AtoCC --- RegExp Edit

It is a powerful tool that we can use to generate DFA from regular expression and validate your

work. In the following slides you will find screenshots on how to use this tool in order to create a

DFA from a regular expression that should conform to the lexical specification of the language.

3

4

5

6

7

8

9

10

AtoCC Format

In assignment 2, you will have to use AtoCC to verify your grammar. For example, you will enter

your grammar in the kfgEdit tool like this (simple grammar shown):

11

Continued --- AtoCC Format

Then, one very convenient thing that this tool allows is to verify a string against the grammar, by

inputting a string in the "input sentence" field in the Derivation tab window (see the image in the

next page)

This allows the tool to verify if this string is parsable or not, and if it doesn’t generate a tree and a

derivation for it. What I want the lexical analyzer to output is a string that you can copy in

the"input sentence" box. This way, you can verify if your grammar is correct by using your lexical

analyzer to output a string representing the token stream, and the kfgEdit tool to verify that you

grammar can parse it.

12

13

Implementation of lexical analyzer

Two ways to implement the lexical analyzer:

1. Table driven (but constructing a transition table by hand is not an easy job)

2. Handwritten (it require you to be very careful considering all the possible situations)

Note: It is your choice to pick one of the methods to implement and your choice will not affect

the prospective assignments. The output of the Scanner is the stream of tokens which can be

accessed when the nextToken() method being called.

14

Continued --- Implementation

● You need to think about the ambiguity problem (you should already know that the

solution is i.e. backtracking) and how to implement a backtracking mechanism.

● Also there is an advanced problem, how to make the lexical analyzer faster (read each

character from the disk when you need a new one or there is some other ways to do it)?

15

Continued --- Implementation

Obviously, we need to use buffers instead of reading when necessary, and there are two ways

provided by the “Dragon book” (its real name is Compilers: Principles, Techniques, and Tools):

1. Buffer in Pair

2. Sentinel

You can refer to the book in order to know more about these ways and how they can be

leveraged in your project work. Although, you can have your own way to implement that.

16

https://www.amazon.ca/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811/ref=sr_1_1?ie=UTF8&qid=1516647700&sr=8-1&keywords=compiler+principles+techniques%2C+and+tools

Buffer in Pair

Involves two buffers that are alternately reloaded, Each buffer is of the same size N, and N is

usually the size of a disk block, e.g., 4096 bytes.

we see forward has passed the end of the next lexeme, ** (the Fortran exponentiation operator),

and must be retracted one position to its left.

17

Continued --- Buffer in Pair

18

Sentinel

19

Thanks!

20

You are not allowed to use any tool like Lex can generate
a Scanner automatically.

