COMP 442 [6421
Compiler Design

Tutorial 2

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca
Jashanjot Singh s_jashan@cs.concordia.ca

Tutorial Slides

You can access the tutorial slide sets through the following link:

http://laihaotao.me/ta/

Ongoing courses

o SOEN 487, 2018 Winter

e COMP 442 /6421, 2018 Winter (mmmmmmmm—

http://laihaotao.me/ta/

Assignment 2 : syntax analysis

e Thislab material is about helping you achieve assignment #2, which is done in two stages:
o Transform the grammar into an LL(1) grammar

o Implement the parser

e Theimplementation absolutely cannot start before the grammar has been transformed.
o We propose a set of tools to help achieve the transformation

o Sample usage of these tools is depicted in this slide set

AtoCC kfgEdit

e Tool that allows you to analyze your grammar and locate possible ambiguities in the
grammar.

e After you grammar is entered, it also allows you to enter a string representing a token
stream and verify if this token stream is derivable from the grammar. If itis, it generates a
parse tree and a derivation for it.

Installing AtoCC \

Installing AtoCC

e AtoCC can be downloaded at the following web site:

o http://www.atocc.de
e Youcaneither download aninstaller, or precompiled applications.

http://www.atocc.de/

You don’t have Windows machine?

Check the following link out:

http://atocc.de/AtoCCFAQ/index.php?option=com content&task=category§ionid=11&id=
25&Itemid=34

Works, for example, for macOS High Sierra version 10.13.1

http://atocc.de/AtoCCFAQ/index.php?option=com_content&task=category§ionid=11&id=25&Itemid=34
http://atocc.de/AtoCCFAQ/index.php?option=com_content&task=category§ionid=11&id=25&Itemid=34

Install AtoCC without administration rights ?

Download AIDCN

Download AtoCC - Form

Download .

These are portable executables, but they often crash, so save your work frequently!

Automated grammar transformation tools

e CyberZHG’s Compiler contruction toolkit:

https://cyberzhg.github.io/toolbox/

e Can help you apply specific transformations
e Usein conjunction with kfgEdit

e However, it does not use the same grammar representation conventions

https://cyberzhg.github.io/toolbox/cfg2ll
https://cyberzhg.github.io/toolbox/

Example grammars in kfgEdit format

(handout) al g : it or gnment #1

nment 1 due

erm break

e Includes some before-after transformation examples.

The Goal of Assignment 2

1. Convertthe given CFGto an LL(1) grammar

a. Usetools to help your transformation procedure

b. Remove the grammar from EBNF to non-EBNF representation

c. Remove ambiguities and left recursions

d. After each transformation step, verify that your grammar was not broken
2. Implement aLL(1) parser

a. Recursive descent predictive parsing

b. Table-driven predictive parsing

Example: removing EBNF constructs

Assume you was given a grammar as following, with EBNF repetition:

commaSeparatedList -> a {,a} | EPSILON

You should remove the EBNF repetition and come up with the following grammar:

commaSeparatedList -> a commaSeparatedListTail
| EPSILON

commaSeparatedListTail -> ,a commaSeparatedListTail
| EPSILON

Example: removing left recursion

After removal of all EBNF format instances, assume you have something like:

expr -> expr + term | term
term -> term * factor | factor
factor -> '(' expr ')' | 'x'

Remove left recursions (on expr and term) using the transformation shown in class:

1- Isolate each set of productions of the form:

A > Aa; | Aoy | Adas | .. (left-recursive)

A Br]| B Bs| (non-left-recursive)
2- Introduce a new non-terminal A’

3- Change all the non-recursive productions on A to:
A = BA | BA | BsA | ..
4- Remove the left-recursive production on A and substitute:
A g | aA | oA | asA | ... (right-recursive)

How to come up with the proper grammar?

- You receive the initial grammar in EBNF in assignment 2 description already

- You need to remove the EBNF since AtoCC kfgEdit cannot understand this form
- Perform left factoring (if necessary)

- Remove left recursion (if exist, unfortunately, they exist in the given grammar)

It is strongly suggested that every time you make a single transformation step, that you use
AtoCC to check whether your transformation broke the grammar or not.

Don’t try to correct many errors in one shot, it is easy to get lost. Plus, if you make a mistake in
one transformation step and you carry on without checking, your further transformation will be
made on a wrong grammar and thus be invalid.

Example \
--- How to use AtoCC for verification

File Help

O * H ¥ ¥ >
Hew Open Save | Validate Grammar is regular ? | Export Automaton Export Compiler

kfG E(Iit] Language Grammar]Deri\r on I LL(1} conditions | Definition

kfG Edit
Define Grammar

nsert:), &1 ‘ Format: [72] [T [“egnsform: evr (5 B 5% | Panels: []j

Grammar Symbol List

|T
| T
| T
T|*
|T
Tl;

type your grammar here

<

How to define a grammar:
* You only need to define your production rules here!
Terminals can also be written within ' ', Terminals will become black and non-terminals red.
First non-terminal on the left side will automatically be the start symbol!
& grarnmar example for palindrams over {a,b}*:
S-»aSa|bShb | EPSILON
* For epsilon rules just leave a blank in a rule or write EPSILON:

Genesis-X7 Software 2007 - 2008

®=®
File Help

0 2 H)
Hew Open Save

Validate Grammar is regular ?

Export Automaton Export Compiler

kfG Edit

KfG Edit I Language] Grammar I Derivatimi LL{1) conditions | Definition]

kfG Edit
First&Follow

LL(1) Conditions:

O Check Condition 1

O Check Condition 2

€ isLL(1) Grammar?

E — O | @1 | oy

with:
“g = T
@) = E - T
az = E + T

First-Sets:
FIRST (cig)
FIRST (1)
FIRST (wz)

id}
id}
id}

X
[
{0

G ‘ Oy G2

- G adfeg iay
(Goady| - (G, ddy
(G ady [ddy | -

T - O | O3 | Oy

g =
@] = /
= *

F

iz = F
First-Sets:
FIRST (c1g)
FIRST (1)
FIRST (c13)

id}
id}
id}

[
I
{0

M G ‘ O [+)
o - G A e iy

oy (G idy) - (¢, id}

Genesis-#7 Software 2007 - 2008

Ty
Gy

g

g
b !

Ol g

{1
{¢

e
(,

idy
id}

01

t(,
id) |
id} | (,

id}

id}

Qg
{(, id}
H(, id}

N

first set intersection

go to the very end of the page

LL(1l}) first condition not fulfilled!

What you should do?

K)
4.
5.

E = Gp | a1 | a3

there is something
wrong with this prodution

((, id}
((, id}
o]
(¢, id} |{(, id}
a; (L(, id) . ((, id)
ay (((, id} |t (, id}| =

Locate a specific error and identify the faulty productions (shown in red)
Copy the related productions into the grammar transformation tool
mentioned above (https://cyberzhg.github.io/toolbox/cfg2ll).

Copy the correction from the tool and paste it into AtoCC

Do some modification to adapt to AtoCC format

Check the grammar again

Note: Don’t try to solve more than one production at a time. When you solve one production’s
error, use the tool to check to make sure you are not bringing new errors.

https://cyberzhg.github.io/toolbox/cfg2ll

l1E —> T ETailTail
2T —-> F TTailTail
3 F -> ([E)

4 | id

EETail -> + T

£ | = &

7TTail —> * F

z | ./ F

¢ ETailTail —-> ETail ETailTail
18 | EPSILON

11 TTailTail —-> TTail TTailTail
12 | EPSILON

12

result from the tool after modification, adapted to AtoCC

kfG Edit

File Help
] 2 ¥ >
Hew Open Save | Validate Grammar is requla X tomaton Export Compiler

kfG Edit] Language I Grammar I Derivatior

kfG Edit .
First&Follow ’

LL(1) Conditions: with:

g = T ETialTial
O Check Condition 1 .
First-Sets:

) Check Condition 2 FIRST (up) = {(, id}
with:

g = F TTialTial

C _ . LLi 1) first condition Fulfilled!
L il) LL(1} second condition Fulfilled!
FIRST {ug) = {{, id}

[|

F = @p | 0

with:
g = id
a4y = (E)

First-Sets:
FIRST (cp) = {id}
FIRST (1) = {(}
|0 loeloy
| ag [“f

o ‘-“

ETail — Og | O3

with:

Genesis-17 Software 2007 - 2008

LL(1l) first condition fulfilled!

FIRST (ETailTail) = {+, -, EPSILON}

¥

FOLLOW (ETailTail) = {§,)}
FIRST (ETailTail) n FOLLOW(ETailTail)

FIRST (TTailTail) = {*, /, EPSILON}
I

FOLLOW(TTailTail) (5,), +, -1}
FIRST (TTailTail) M~ FOLLOW(TTailTail)

LL(1l) second condition fulfilled!

Thanks

