COMP 442 [6421
Compiler Design

Tutorial 4

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca
Jashanjot Singh s_jashan@cs.concordia.ca

Contents

Concrete Parse Tree vs Abstract Syntax Tree

ENIES

Concrete Parse Tree vs Abstract Syntax Tree

A parse tree pictorially shows how the start symbol of a grammar derives a string in the
language.

Whereas,

Abstract syntax trees, or simply syntax trees, differ from parse trees because superficial
distinctions of form, unimportant for translation, do not appear in syntax trees.

Also, they're most often expressed by the data structures of the language used for
implementation. (!

Concrete Parse Tree vs Abstract Syntax Tree

e AST’singnore some details as compared to Parse Trees.
e Forexample:

e E—int|(E)|E+EandaString 5+ (2+3)

e After lexical analysis we get, int, ‘+' ‘("int, '+ int, bl

e Butitdoes contain too much information.

\ Concrete Parse Tree vs Abstract Syntax Tree

How to construct an AST

The AST structure is constructed bottom-up where,

e Alist of siblings is generated and
e Thelistislater adopted by a parent.

Each node needs connection to:
Parent: to migrate information upwards in the tree
Link to parent
- Siblings: to iterate through (1) a list of operands or (2) members of a group,
e,g, members of a class, or statements.
Link to right sibling (thus creating a single linked list of siblings)

Link to leftmost sibling (in case one needs to traverse the list as a sibling is being
processed).

Children: to generate/traverse the tree

Link to leftmost child (who represents the head of a linked list of children).

\ Data Structure Design

leftmost sibling right sibling

leftmost child

parent

How to construct an AST

class AST

+ static makeNode() -> AstNode
+ static makeFamily() -> AstNode
+ root: AstNode

class AstNode

+ makeSibling()
+ adoptChildren()

* note: only the key fields and methods were shown here, you may need extra fields or methods

makeSibling()

assume we are calling: X.makeSibling(Y, Z)

‘iA “““““““““““““““
m{}-{}m - N - I

makeSibling()

find X's rightmost sibling, link it with the Y’s leftmost sibling, treat them as a whole and link to Z’s
leftmost sibling (repeat until no more new unlinked)

makeSibling()

set all new added elements’ parent to X’s parent and all their leftmost sibling pointer to the X’s
leftmost sibling

\ adpotChildren()

assume we are calling X.adoptChildren(Y')

adpotChildren()

There will be two possibilities:

1. Xalready has a leftmost child
2. Xdon't have any leftmost child

adpotChildren()

1. justlinkZtoY, dowhat we do in makeSibling()
2. link new element’s parent to X and set X’s leftmost child pointer to Y’s leftmost sibling

References

[1] Compilers: Principles, Techniques, and Tools" by Aho, Sethi and Ullman

[2] https://eli.thegreenplace.net/2009/02/16/abstract-vs-concrete-syntax-trees/

[3] C.N. Fischer, R.K. Cytron, R.J. LeBlanc Jr., Crafting a Compiler, Adison-Wesley,

2009. Chapter 7.

https://eli.thegreenplace.net/2009/02/16/abstract-vs-concrete-syntax-trees/

