COMP 442 [6421
Compiler Design

Tutorial 6

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca
Jashanjot Singh s_jashan@cs.concordia.ca

Content

- Important parts in code generation
- Howtouse MOON
- Example

Attention

There are two approaches to do the code generation:

e tag-based approach: cannot achieve all required functionalities, but it is simple
e stack-based approach: can achieve all requirement, but complicated

If you decide to achieve most of the functionalities you need to choose stack-based approach
but it will require a lot of work.

Code Generation \
tag-based approach

Tag-based Approach

The way to do it is straightforward and simple, for each variable you allocate a memory for it and
associate it with a unique tag which is stored in the symbol table.

Next time, when you want to access this variable (in-memory location) you can just get its
address by using that predefined tag in your table.

Code Generation \
stack-based approach

The key of code generation » offset

Recall

- How can you know whether a variable has been declared or not when you try touse it ?
- How many column you have in your symbol table ? What do they use for ?

Offset
- Itrepresent how far a variable away from a base address;
- For example, a member variable of a class, offset of the variable means how far this
variable’s first address away from the first address of the class;

In order to achieve code generation:
- Add anew column to your symbol table — offset
- Calculate the offset of each data type when you add that entry into your table

Offset Example » the forth column

= class MyClass { Table Name: MyClass table, Parent Table Name: global table
Ant X[3][8]5 e
= int addNum() { | name | kind | type | offset | link |
int x; T T T
¥ ’ | addNum | Function | Int | 96 | addNum table |
} 2 [| variable | Int[3][8] | @ | null |
2 o e e e ot e S ot oot et e Yot e Sl e oYl e St et e et e e it eV B el et e T St Y

Table Name: program table, Parent Table Name: global table
- program {

int x; | name | kind | type | offset | link |
ANt Y, o
MyClass myClass[4][5]; | myClassi | variable | MyClass | 1928 | MyClass |
MyClass myClassi; [| variable | Int | | null |

| myClass | variable | MyClass[4][5] | 8 | null |

| v | variable | Int | 4 | null |

Stack Mechanism \

What is the stack?

The stack we talk about here is not the real “data structure stack”. It is a
function invocation stack. When a function being called, its frame will be
pushed into the stack and when the function return the corresponding
frame will be popped out.

In our case, we treat the MOON'’s memory as a stack.

MOON Memory
(think it as a stack)

Stack-based Function Call Mechanism

int add(int a, int b) { baipa Lol
return a + b;

1

2

3}

4

5 program {
6 int a;
7 int b;
8 int c;
9 a=1;
10 b = 2;
It c = add(a, b);
12 put c;
13 }

MOON Memory
14 (think it as a stack)

Stack-based Function Call Mechanism

1nt add (lnt d ’ lnt b) { 0 = frame pointer
Fetu ol Gl s b; program function v

frame (in blue)
} stack pointer

1
P
3
4
5 program {
6
7
8
9

int a;
int b;
int c;
a=1:
10 b = 2;
11 c = add(a, b);
12 put c;
13 }
14

when program() being executed

How you can know where you should put
a, b, c and how to locate them?

frame pointer

program function

frame (in blue)

stack pointer

frame pointer

program function | |
frame (in blue) _ ' |
' . ' stack pointer

Remember we have offset!

offset — the distance from the variable cell to the frame pointer (current function’s base
address).

stack pointer — where the new function frame should be put.

Stack-based Function Call Mechanism

1
P
3
4
5
6
7
8
9

10
11
12
i3
14

int add(int a, int b) { 1000 0000 0000 0000
return a + b; 0111 1111 1111 1100

by

program
int
int
int

0111 1111 1111 1000

add() function
'{ frame (in blue)

frame pointer

stack pointer

when add() being executed

MOON Processor \

Background

The MOON processor is wrote by Dr. Peter Grogono, the last
modification is on 30 January 1995;

It is a kind of “virtual machine” we used to run our generated
code (assembly language)

You can get the source code of Moon in the bottom of the course
website

You need to have the very basic idea of assembly language

doc

"= moondoc.pdf

moondoc.tex

samples

m

m

m

m

m

m

m

m

T

m

arithmetics.m
countchars.m
factorials.m
fixedpoint.m
genrand.m
lib.m

newlib.m
@ README
sample.m
stringops.m
util.m

source

C

moon.c

How to compile MOON?

You need to have a C compiler (eg. gcc)

Download the source code and unzip it

Open Terminal, change your working directory to where you put the source code
Compile it using the very basic compile command

Sl A

For example, if you are using gcc, just type the following command in the terminal:
gcc [-o executable file name] moon.c

If you don’t specify the name, the executable will be named “a” in Unix, Linux or macOS.

Note: there is a PDF file accompanying with the source code, you are strongly suggested to read that file before you ask any question.

Important Parameters of MOON

- Allinstructions of MOON occupy one word

- There are total 16 registers from RO to R15, RO always contains zero

- Program counter is 32-bit and contains the address of next instruction to be executed
- Memory address in the range of [0, 27 31], the usable memory is less than that

How to use MOON?

There are 4 types of instruction:
1. Dataaccessinstructions
2. Arithmetic instructions
3. Input and output instructions
4. Controlinstructions

Terminology
- M,IK]: it denotes the byte stored at address K;

- M,[K]: it denotes the word stored at address K, K+ 1, K+ 2 and K + 3;
- Anaddress is aligned if it is a multiple of 4;

- Anaddress is legal if the address byte exists;

- The name PC denotes the program counter;

- Thename RO, R1, ... denotes the registers;

- The symbol < denotes data transfer;

Note: the slide cannot show all instructions provided by MOON, please consult the documentation for more detailed !

Data Access Instructions

must aligned | Load word R(7) &2 M33[R(j) + K]

Load byte Roa.31(5) ¢ Ms[R(j) + K]
must aligned | Store word ,Ri | M33[R(j) + K] & R(i)
Store byte JRi | Ms[R(j) + K] <= Ros..31(3)

Take load word as an example:

R(i) « 32 M32[R(j) + K] means take one word data stored in the address (R(j) + K) and put it into
register R(i)

where K in the range of [-16384, 16384)

Arithmetic Instructions

There are two types of arithmetic instructions:

1. R(i)«R(j)+R(k),sumup the second and third register’s value and put the result into
the first register;

2. R{(i)«R(j)+k,sumup the second register’s value and the third value then put the result
into the first register;

We call all productions like the second one shown above “instruction with immediate operand”.

Arithmetic Instructions

(Funcion | Operaon [Fer] [Fuwetion |
Add Ri, Rj, Rk R(I & R(]) + R(k) Add immediate i Ri,Rj,K
Subfasct Ri,Rj,Rk | R(i — R(k) Subtract immediate i Ri,Rj,K
Multiply Ri,Rj, Rk | R(i Multiply immediate i Ri,Rj, K
Divide . Ri, Rj, Rk (z + R(k) Divide immediate ivi Ri,Rj, K
Modulus Ri,Rj, Rk mod R(k)
And Ri,Rj, Rk R(k)

ENRENEEN
w
N

Te

~.

Modulus immediate i Ri,Rj, K
And immediate i Ri,Rj,K
Or immediate i Ri,Rj, K
Equal immediate i Ri,Rj,K
Not equal immediate i Ri,Rj,K
Less immediate i Ri,Rj, K
Less or equal immediate i Ri,Rj, K
Greater immediate i Ri,Rj,K
Greater or equal immediate i Ri,Rj,K
Shift left Ri, K

Shift right Ri, K

~.
w
~

fege]

Not Ri,Rj

Equal Ri,Rj, Rk
Not equal Ri,Rj, Rk
Less Ri,Rj, Rk
Less or equal Ri,Rj, Rk
Greater Ri,Rj, Rk
Greater or equal Ri,Rj, Rk

w
»

NN NN
w w w
8 ~ N N v

Tefe T

~.

)
)
)
)
R(i)
R(i) ¢
Or Ri, Rj, Rk | R(i) ¢ R(k
R(i) ¢
R(i) €
R(i) ¢
R(i)
R(i) ¢
R(i)
R()

AANARAADAADADA B

~.

- the logical operation operate on each bit of the word
- the comparison operator store result either “1” (true) or “0” (false)
- in the right side table, the operand K is a signed 16-bit quantity, negative numbers like -1 is interpreted as -1 not 65535

Input and Output Instructions

This two instructions are useful when you try to out the result of your program
to show it really worked during the final demo.

Control Instructions

Branch if zero if R(i) = 0 then PC ¢ PC + K
Branch if non-zero if R(4) # 0 then PC & PC+K
Jump j PC&E PC+K

Jump (register) j ; PC & R(i)

Jump and link ' R(i) €% PC +4; PC % PC + K
Jump and link (register) | j R(3) & pC +4;PC & R(3j)
No-op Do nothing

Halt Halt the processor

- whenyou use branch, remember to set the PC (program counter) correctly
- jumpinstruction will be useful when you generate function code, you need to store the
return address properly

MOON Example \

Refer to the sample folder

the most simple one is the sample.m, | strongly samples
recommend you begin with this example in m arithmetics.m
order to get familiar with MOON. m countchars.m

m factorials.m
m fixedpoint.m
m genrand.m
m lib.m

m newlib.m
@ README

m Sample.m

m Stringops.m

m util.m

sample.m

1l org 103

2 message db "Hello, world!", 13, 10, 0

3 org 217

4 align

5 entry % Start here

6 add r2,ro,ro

7 pri b r3,message(r2) % Get next char

8 ceqi r4,r3,0

9 bnz r4,pr2 % Finished if zero
10 putc r3

g addi r2,r2,1

12 j pri % Go for next char
13 pr2 addi r2,r0,name % Go and get reply
14 gl ri5,getname

15 hlt % ALl done!

sample.m

17 % Subroutine to read a string

18 name res 59 % Name buffer

19 align

20 getname getc r3 % Read from keyboard
21 ceqi r4,r3,10

22 bnz r4,endget % Finished if CR

23 sb 0(r2),r3 % Store char in buffer
24 addi r2,12,1

25 j getname

26 endget sb 0(r2),ro0 % Store terminator
27 jr rld % Return

28

29 data dw 1000, -35

Final Example

source code » assembly code

program entry % =
int x: 2 align % following instruction align

addi R1, RO, topaddr % initialize the stack pointer
addi R2, RO, topaddr % initialize the frame pointer
subi R1, R1, 12 % set the stack pointer to the top position of the stack
addi R14, RO, 2 %
sw =12(R2), R14 %
addi R8, RO, 34 %
sw -8(R2), R8 %
w R6, -12(R2) %
w R9, -8(R2) %
lw R11l, -12(R2)
R9, R9, R11 %
R6, R6, RO %
sw -4(R2), R6 %
lw R1@, -4(R2) %
putc R10 %

int

ERIC_LAI ./moon ../OnlyProgram.m
Loading ../0OnlyProgram.m.

F f 242°894 =70 —> asciiceds B

— -

221 cycles.

program { entry % ======program entry

int Xx;

X = 65;

if (x==71)
X = 65;

align % following instruction align
addi R1, RO, topaddr % initialize the stack pointer
addi R2, RO, topaddr % initialize the frame pointer
subi R1, R1, 4 % set the stack pointer to the top position of the stack
addi R14, RO, 65 %
sw -4(R2), R14 %
w R8, -4(R2) %
ceqi R8, R8, 1 %
bz R8, else_l1 % if statement
addi R6, RO, 65 %
sw -4(R2), R6 %
j endif_1 % jump out of the else block
else_1 addi R9, RO, 66 %
sw -4(R2), R9 %
endif_1 nop % end of the if statement
w R1l, -4(R2) %
putc R11l %

} else {
=663

ERIC LAI ./moon ../IfStat

Loading ../IfStatement.m.

Co

162 cycles.

Thanks!

Good Luck for your project. ..

