
COMP 442 / 6421
Compiler Design
Tutorial 2
Lexical Analyser

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca

1

Lab Instructor

Section: lab hours NNK M------ 20:30-22:20 H819

Name: Haotao Lai (Eric)

Office: EV 8.241

Email: h_lai@encs.concordia

Website: http://laihaotao.me/ta

http://laihaotao.me/ta

Lexical Analyser

Lexical analysis is the process of converting a sequence of characters into a sequence of
tokens .

Input: source code file

Output: tokens

What is token?

3

Token

- A syntactic category

- In English:

- Noun, verb, adjective

- In a programming language:

- Identifiers, Integer, Floating point number, Keywords, …

4

Token

In our assignment:

TOKEN is a data structure with the following components:

- Type

- Lexeme

- Position

5

Lexical Analyser

How to design a lexical analyser? (That’s what the lexical specification does)

1. Define a finite set of tokens

2. Describe which strings belong to each token

How to implement a lexical analyser? (That’s your assignment)

1. Recognize substrings corresponding to tokens

2. Return the value or lexeme of the token

6

Implementation

7

Regx to NFA

There are three basic operations:

8

Regx to NFA

Example1

 You are given the regular expression: (a | b)*abb, please draw the NFA.

9

Regx to NFA

Example2

 You are given the regular expression: letter alphanum*, please draw the NFA.

10

NFA to DFA

11

Regx to DFA

Regx: letter (letter | digit)*

12

NFA vs. DFA

Nondeterministic Finite Automata

- Can have multiple transitions for one input in a given state

- Can have ε-move

Deterministic Finite Automata

- One transition per input per state

- No ε-move

NFAs and DFAs recognize the same set of languages, but DFAs are faster to execute.

13

Lexical Analyser

Once you have the transition table, you should

be able to implement the state machine which is

the most important part in lexical analysis.

- nextToken()

- nextChar()

- backupChar()

- isFinalState(state)

- table(currentState, comingChar)

- createToken(state)

14

An useful tool --- AtoCC

The learning environment can be of use in teaching abstract automata, formal languages, and

some of its applications in compiler construction. From a teacher's perspective AtoCC aims to

address a broad range of different learning activities forcing the students to actively interact

with the subjects being taught.

Note: We will need to use it for assignment 2 for grammar verification (will explain into detail

when you receive assignment 2)

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

15

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

AtoCC --- RegExp Edit

It is a powerful tool that we can use to generate DFA from regular expression and validate your

work. In the following slides you will find screenshots on how to use this tool in order to create a

DFA from a regular expression that should conform to the lexical specification of the language.

16

17

18

19

20

21

22

23

AtoCC Format

In assignment 2, you will have to use AtoCC to verify your grammar. For example, you will enter

your grammar in the kfgEdit tool like this (simple grammar shown):

24

Continued --- AtoCC Format

Then, one very convenient thing that this tool allows is to verify a string against the grammar, by

inputting a string in the "input sentence" field in the Derivation tab window (see the image in the

next page)

This allows the tool to verify if this string is parsable or not, and if it doesn’t generate a tree and a

derivation for it. What I want the lexical analyzer to output is a string that you can copy in

the"input sentence" box. This way, you can verify if your grammar is correct by using your lexical

analyzer to output a string representing the token stream, and the kfgEdit tool to verify that you

grammar can parse it.

25

26

Implementation of lexical analyzer

Two ways to implement the lexical analyzer:

1. Table driven (but constructing a transition table by hand is not an easy job)

2. Handwritten (it require you to be very careful considering all the possible situations)

Note: It is your choice to pick one of the methods to implement and your choice will not affect

the prospective assignments. The output of the Scanner is the stream of tokens which can be

accessed when the nextToken() method being called.

27

Reference

https://users.encs.concordia.ca/~paquet/wiki/images/1/19/COMP442-6421.2.lexical.ppt

http://web.stanford.edu/class/cs143/lectures/lecture03.pdf

http://web.stanford.edu/class/cs143/lectures/lecture04.pdf

https://www.youtube.com/watch?v=dlH2pIndNrU

https://www.youtube.com/watch?v=taClnxU-nao

https://www.youtube.com/watch?v=RYNN-tb9WxI

https://github.com/laihaotao/compiler_design.git

28

https://users.encs.concordia.ca/~paquet/wiki/images/1/19/COMP442-6421.2.lexical.ppt
http://web.stanford.edu/class/cs143/lectures/lecture03.pdf
http://web.stanford.edu/class/cs143/lectures/lecture04.pdf
https://www.youtube.com/watch?v=dlH2pIndNrU
https://www.youtube.com/watch?v=taClnxU-nao
https://www.youtube.com/watch?v=RYNN-tb9WxI
https://github.com/laihaotao/compiler_design.git

