COMP 442 [6421
Compiler Design

Tutorial 2
Lexical Analyser

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca

Lab Instructor

Section: lab hours NNK M------ 20:30-22:20 H819

Name: Haotao Lai (Eric)
Office: EV 8.241
Email: h_lai@encs.concordia

Website: http://laihaotao.me/ta

http://laihaotao.me/ta

Lexical Analyser

Lexical analysis is the process of converting a sequence of characters into a sequence of
tokens.

Input: source code file

Output: tokens

What is token?

Token

- Asyntactic category
- InEnglish:
- Noun, verb, adjective
- Inaprogramming language:

- Identifiers, Integer, Floating point number, Keywords, ...

Token

In our assignment:
TOKEN is a data structure with the following components:
- Type

- Lexeme
- Position

Lexical Analyser

How to design a lexical analyser? (That’s what the lexical specification does)

1. Define afinite set of tokens
2. Describe which strings belong to each token

How to implement a lexical analyser? (That’s your assignment)

1. Recognize substrings corresponding to tokens
2. Returnthe value or lexeme of the token

Implementation

/ e \
Regular

expressions

Lexical Table-driven
Specification Implementation of DFA

Regx to NFA

There are three basic operations:

AT
epsilon

epsilon

Regx to NFA

Examplel

You are given the regular expression: (a | b)*abb, please draw the NFA.

Regx to NFA

Example2

You are given the regular expression: letter alphanum*, please draw the NFA.

10

\ NFA to DFA

o b C et
>tz — 4 |
2| — 3 — 2
® 2 - — 3
yl — — 3 4,3
ai* \:)‘(:‘ Qi*
> | 2/' SR L{/?-)
21121 e 4,3
3 Z,) - 3

11

\ Regx to DFA

Regx: letter (letter | digit)*

12

NFA vs. DFA

Nondeterministic Finite Automata

- Can have multiple transitions for one input in a given state
- Canhave e-move

Deterministic Finite Automata

- One transition per input per state
- Noe-move

NFAs and DFAs recognize the same set of languages, but DFAs are faster to execute.

13

Lexical Analyser

Once you have the transition table, you should
be able to implement the state machine which is
the most important part in lexical analysis.

- nextToken()

- nextChar()

- backupChar()

- isFinalState(state)

- table(currentState, comingChar)
- createToken(state)

/ NFA

Regular
expressions

|

Lexical
Specification

T~

Table-driven
Implementation of DFA

14

An useful tool --- AtoCC

The learning environment can be of use in teaching abstract automata, formal languages, and
some of its applications in compiler construction. From a teacher's perspective AtoCC aims to
address a broad range of different learning activities forcing the students to actively interact
with the subjects being taught.

Note: We will need to use it for assignment 2 for grammar verification (will explain into detail
when you receive assignment 2)

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

15

http://www.atocc.de/cgi-bin/atocc/site.cgi?lang=en&site=main

AtoCC --- RegExp Edit

It is a powerful tool that we can use to generate DFA from regular expression and validate your
work. In the following slides you will find screenshots on how to use this tool in order to create a
DFA from a regular expression that should conform to the lexical specification of the language.

16

File Help

Q12 H " ¥
w | Open Save | Export Automaton Export Grammar

Alphabetl RegEpr Simulationl

ReEExE

RegExp Project:

‘;' i Introduction Wizard A quick introduction to get in touch with RegExpEdit.
_‘] New RegExp Create an empty project.
Getting Help:

(?) Online FAQ To get any further information visit the Online Help Center.

www.AtoCC.de Visit the AtoCC website.

Genesis-X7 Software 2008

=

&) RegExpEdit -

File Help

0 2 H > . ¥
New Open Save Export Automaton Export Grammar

RegExp Editol egExp l Simulation |

\
RedgEXp
Alphabet

Edit Alphabet:

Add Alphabet Item

¢ Delete Alphabet item

<z Predefined Alphabet

<<< Back

Next

| Clear

>>>

Genesis-X7 Software 2008

&) RegExpEdit.
File Help
D 2 H > . >

New Open Save | Export Automaton Export Grammar

RegExp Editorl Alphabe Simulationl

ReEE E
RegExp
Enter RegExp here / NEA Graph Minimized NEA Graph

[letter(letter+digital)* y

Use the formal notation for regular expressions.
Like: (a+b)*ab(a+b)* for L = {w | w contains ab} over {a,b}.

Minimized RegExp

Iletter(digital+letter)’

Compare RegExp with another

I 7] compare digital,letter

Transform to NEA
Generate NEA graph for your RegExp at the right. Show NEA O

Hint: For € yvou must write EPSILON in your RegExp.

€u=ue=u €*=¢ utv=vtu jutu=u (©*)* =u* o(vtw)=uvtuw (av)*u=ua(ve)* |(@+v)* = (@* + v*)*

Genesis-X7 Software 2008

E RegExpEdit [C:\Users\h_lai\Desktop\t1.xml] o
File Help
0 2 H > . >

New Open Save Export Automato Export Grammar

RegExp Editor] Alphabet R

ReEE E _

Enter RegExp here NEA Graph Minimized NEA Graph

|(a+b)-abb

Use the formal notation for regular expressions.
Like: (a+b)*ab(a+b)* for L = {w | w contains ab} over {a,b}.

Minimized RegExp

|(a+b)*abb

Compare RegExp with another

I ‘,_] Compare

Transform to NEA
Generate NEA graph for your RegExp at the right. Show NEA O

Hint: For € you must write EPSILON in your RegExp.

€u=ue =u €*=¢ uwtv=vtu jutu=u (@*)* =u* o(vtw)=uvtuw (av)*u=u(ve)* | (@+v)* = (@* + v*)*

Genesis-X7 Software 2008

ﬁﬂj AutoEdit [C:\Users\h_lai\Desktop\t1.xml]

File Help

U H % > > >
New Open Save Undo Notepad @ Export Grammar Export RegExp Export Compiler

Automaton Editorl Type I Alphabetl Transition Tablel Transition Graph | Publish

AutoEdit

Simulation:

Edit Simulation settings:
Input:
bbbbaab ()
[k8] Start Simula
Speed:

—

[~ Single Step

= Export Scheme Code

Configuration sequence I Check multiple input I

Conﬁguratlon sequence

‘OOOOOOOO

bbbbaab | bbbasb |bbaab |baab | aab | ab

<<< Back

Genesis-X7 Software 2004 - 2008

ﬁﬂj AutoEdit [C:\Users\h_lai\Desktop\t1.xml]

File Help

U H % > > >
New Open Save Undo Notepad @ Export Grammar Export RegExp Export Compiler

Automaton Editorl Type I Alphabetl Transition Tablel Transition Graph | Publish

AutoEdit - \

Edit Simulation settings:

Input: b
bbbbaabb (?) o
& Start Simulation \ @z
7
/

Speed:

—

[~ Single Step

= Export Scheme Code

Configuration sequence I Check multiple input I

Conﬁguratlon sequence

R OO CROROROR],

bbbbaabb bbbasbb | bbaabb | baabb |aabb | abb | bb

<<< Back

Genesis-X7 Software 2004 - 2008

Automaton Editorl Type] Alphabetl Transition Table | Transition Graph Publish | simulation |

AutoEdit

HTML Publish:

Edit Publish settings: ——
Type: NEA
ks] Change Font Transition Graph:

& ExportGraph ... Start letter

= Export Definition ... digit,letter

B EXDOLTIan-RI0RS Definition: M = ({qo.q1}.{digit letter}.5.q0.{q1})

= Exportas HTML Transition Table:

O | digit letter

qo | {+ {a4
a+ |{a+} {q4}

Grammar: G = (N,T,P,s)

6= ({QOIQ1}/{‘j|‘J‘tv|'3tt’5’f'},p:q0)

P={
qo -> letter q; | letter
q: -> digit q; | digit | letter q; | letter

b
letter(digit+letter)™

<<< Back Next >>>

AtoCC Format

In assignment 2, you will have to use AtoCC to verify your grammar. For example, you will enter
your grammar in the kfgEdit tool like this (simple grammar shown):

T2 G Edit
File Help
0 2 H 4 P > >

New Open Save | Validate Grammar is regular? | Export Automaton Export Compiler

kfG Edit | Language Derivation | LL(1) conditions | Definition |

kfG Edit

Define Grammar

Edit: K} [1) |msert:m) 41 | Format: [F] [| Transform: cue (3 B LR | Panels: | [

Grammar
1E —> '('E')' E1 | 'id' E1
2El -> EPSILON | '+' E

Continued --- AtoCC Format

Then, one very convenient thing that this tool allows is to verify a string against the grammar, by
inputting a string in the "input sentence" field in the Derivation tab window (see the image in the
next page)

This allows the tool to verify if this string is parsable or not, and if it doesn’t generate a tree and a
derivation for it. What | want the lexical analyzer to output is a string that you can copy in
the"input sentence" box. This way, you can verify if your grammar is correct by using your lexical
analyzer to output a string representing the token stream, and the kfgEdit tool to verify that you
grammar can parse it.

25

T2 kG Edit
File Help

;_‘] b 4 - -~ 'l' ';5
New Open Save Validate Grammar is regular ? Export Automaton Export Compiler

kfG Ed'rt] Language] Grammar Derivation] LL(1) conditions I Definition I

kfG Edit |

Input Sentence: |Tai et g &> || m
Derivation Tree Derivation

Zoom: [1e% - | QIE0) sentencial form used rule
E E -> id E1
id El -> + E
id E -> id E1
id 1 El -> + E
id E E -> (E) E1
id (E) E1 E -> id E1
id id E1) E1 El1 -> EPSILON
id id) E1 E1 -> EPSILON
id id)

i
2]

L BREE BN SO K TREC B N - |

Implementation of lexical analyzer

Two ways to implement the lexical analyzer:

1. Tabledriven (but constructing a transition table by hand is not an easy job)
2. Handwritten (it require you to be very careful considering all the possible situations)

Note: It is your choice to pick one of the methods to implement and your choice will not affect
the prospective assignments. The output of the Scanner is the stream of tokens which can be
accessed when the nextToken() method being called.

27

Reference

https://users.encs.concordia.ca/~paquet/wiki/images/1/19/COMP442-6421.2.lexical.ppt
http://web.stanford.edu/class/cs143/lectures/lecture03.pdf
http://web.stanford.edu/class/cs143/lectures/lecture04.pdf
https://www.youtube.com/watch?v=dIH2pIndNrU
https://www.youtube.com/watch?v=taClnxU-nao
https://www.youtube.com/watch?v=RYNN-tb9WxI

https://github.com/laihaotao/compiler design.git

28

https://users.encs.concordia.ca/~paquet/wiki/images/1/19/COMP442-6421.2.lexical.ppt
http://web.stanford.edu/class/cs143/lectures/lecture03.pdf
http://web.stanford.edu/class/cs143/lectures/lecture04.pdf
https://www.youtube.com/watch?v=dlH2pIndNrU
https://www.youtube.com/watch?v=taClnxU-nao
https://www.youtube.com/watch?v=RYNN-tb9WxI
https://github.com/laihaotao/compiler_design.git

