
COMP 442 / 6421
Compiler Design
Tutorial 3
Syntactic Analyser

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca

1

Lab Instructor

Section: lab hours NNK M------ 20:30-22:20 H819

Name: Haotao Lai (Eric)

Office: EV 8.241

Email: h_lai@encs.concordia

Website: http://laihaotao.me/ta

2

http://laihaotao.me/ta

The Goal of Assignment 2

● input: a list of tokens from the first assignment

● output: an abstract syntax tree

1. Convert the given CFG to an LL(1) grammar
a. Use tools to help your transformation procedure
b. Remove the grammar from EBNF to non-EBNF representation
c. Remove ambiguities and left recursions
d. After each transformation step, verify that your grammar was not broken

2. Implement a LL(1) parser
a. Recursive descent predictive parsing
b. Table-driven predictive parsing

3

Notation

If A→γ is a production, then αAβ ⇒ αγβ denotes one step of a derivation using this production.

⇒ denote one step of a derivation of a production

⇒ + derives in one or more steps

⇒ * derives in zero or more steps

4

Convert CFG an LL(1)G

In context free grammar, all rules are one-to-one, one-to-many or one-to-none. These

rule can be applied regardless of context [1]. A CFG can be defined as G(T, N, P, S), it is

usually represented by using BNF notation.

Given the following grammar:

S ￫ AA A ￫ a A ￫ b

The following input are valid:

aa ab ba bb

[1] https://en.wikipedia.org/wiki/Context-free_grammar
5

https://en.wikipedia.org/wiki/Context-free_grammar

Convert CFG an LL(1)G

LL(k) grammar is a formal grammar that can be parsed by an LL parser, which parse the input

from left to right and constructs a leftmost derivation of the sentence. The k within the

parenthesis is the number of token the parser will lookahead when parsing a sentence.

Given a grammar G with three productions: S ￫ E E ￫ (E + E) E ￫ i

and input string: w = ((i + i) + i), the leftmost derivation will be:

S ￫ E ￫ (E + E) ￫ ((E + E) + E) ￫ ((i + E) + E) ￫ ((i + i) + E) ￫ ((i + i) + i)

6

Remove EBNF Representation

We need to remove two notations introduced by the EBNF format which are repetition and

optional of the symbol.

Repetition example: A -> B {C} D

Optional example: A -> B [C] D

They all can be eliminated by introducing an new nonterminal symbol.

7

LL(1) Parsing

In LL(1) parsing, for each combination of a nonterminal and a input token, there should be only

one possible production (if it is syntax valid) or no production (if it is a error state).

So we need to make sure after elimination of the EBNF notation, our grammar should be

deterministic for each nonterminal symbol. A non-deterministic example can be: A -> B C | B D

Another situation that can lead to the failure of LL(1) parsing is left recursion of the production,

an example can be: A -> A a | b. With such an production, you don’t know where will be the

ending point during the parsing.

8

Three Roadblocks

Quick review

1. Ambiguity

2. Non-deterministic

3. Left recursion

For theoretical detail, see the lecture slide set [syntax analysis: introduction].

9

Ambiguity Grammar

Grammar: E -> E + E | E * E | id

Input string: id * id + id

Requirement of the parse tree:

A tree that its in order traversal should give the string same as the input string

10

Ambiguity Grammar

The solution for ambiguity is rewrite the grammar (that’s exactly what you need to do in

assignment 2) to make it unambiguous.

In this case, we want to enforce precedence of multiplication over addition.

 original: E -> E + E | E * E | id

 modified:

 E -> E’ + E | E’

 E’ -> id * E’ | id

11

Note

The modified grammar here is not a
LL(1) grammar, the example here
just show how to remove ambiguity.

If you look carefully, you will find it is
actually a LL(2) grammar

Non-deterministic Grammar

1. backtracking can solve this problem, but it is inefficient;

2. introduce a new non-terminal which we refer as left factoring

12

Left Recursion

Grammar: A -> Aα | β

By analyze these three possibilities, our goal is to construct something like: A -> βα*

But we don’t allow * in the grammar, so we can replace a* with a new non-terminal A’, so we

have:

A -> βA’

A’ -> αA’ | ε

13

Perform Left Factoring

A -> B C | B D

A -> B’

B’ -> C | D

14

Eliminate Left Recursion

A -> A a | b

A -> b A'

A' -> a A' | epsilon

15

Parsing Example

Assume we have the following grammar:

E → T + E | T

T → int | int * T | (E)

Left-factored grammar:

E →T X

T → (E) | int Y

X →+ E| ε

Y →* T | ε

16

First Set

17

First Set

E →T X

T → (E) | int Y

X →+ E| ε

Y →* T | ε

18

Follow Set

19

Follow Set

E →T X

T → (E) | int Y

X →+ E| ε

Y →* T | ε

20

First Set and Follow Set

example 1:

S -> A B C D E

A -> a | ε
B -> b | ε
C -> c

D -> d | ε
E -> e | ε

21

First Set and Follow Set

example 2:

S -> B b | C d

B -> a B | ε
C -> c C | ε

22

First Set and Follow Set

example 3:

S -> A C B | C b B | B a

A -> d a | B C

B -> g | ε
C -> h | ε

23

http://laihaotao.me/ta/comp442/w18_comp442_fst_flw_set.pdf

http://laihaotao.me/ta/comp442/w18_comp442_fst_flw_set.pdf

How to come up with the proper grammar?

- You receive the initial grammar in EBNF in assignment 2 description already

- You need to remove the EBNF since AtoCC kfgEdit cannot understand this form

- Perform left factoring (if necessary)

- Remove left recursion (if exist, unfortunately, they exist in the given grammar)

It is strongly suggested that every time you make a single transformation step, that you use
AtoCC to check whether your transformation broke the grammar or not.

Don’t try to correct many errors in one shot, it is easy to get lost. Plus, if you make a mistake in
one transformation step and you carry on without checking, your further transformation will be

made on a wrong grammar and thus be invalid.

24

Installing AtoCC

25

Installing AtoCC

● AtoCC can be downloaded at the following web site:

○ http://www.atocc.de

● You can either download an installer, or precompiled applications.

26

http://www.atocc.de/

You don’t have Windows machine?

Check the following link out:

http://atocc.de/AtoCCFAQ/index.php?option=com_content&task=category§ionid=11&id=
25&Itemid=34

Works, for example, for macOS High Sierra version 10.13.1

27

http://atocc.de/AtoCCFAQ/index.php?option=com_content&task=category§ionid=11&id=25&Itemid=34
http://atocc.de/AtoCCFAQ/index.php?option=com_content&task=category§ionid=11&id=25&Itemid=34

Install AtoCC without administration rights ?

These are portable executables, but they often crash, so save your work frequently!

28

Automated grammar transformation tools

● CyberZHG’s Compiler construction toolkit:

 https://cyberzhg.github.io/toolbox/

● Can help you apply specific transformations

● Use in conjunction with kfgEdit

● However, it does not use the same grammar representation conventions
29

https://cyberzhg.github.io/toolbox/cfg2ll
https://cyberzhg.github.io/toolbox/

Example
--- How to use AtoCC for verification

30

AtoCC kfgEdit

● Tool that allows you to analyze your grammar and locate possible ambiguities in the

grammar.

● After you grammar is entered, it also allows you to enter a string representing a token

stream and verify if this token stream is derivable from the grammar. If it is, it generates a

parse tree and a derivation for it.

31

32

33

34

35

What you should do?

1. Locate a specific error and identify the faulty productions (shown in red)

2. Copy the related productions into the grammar transformation tool

mentioned above (https://cyberzhg.github.io/toolbox/cfg2ll).

3. Copy the correction from the tool and paste it into AtoCC

4. Do some modification to adapt to AtoCC format

5. Check the grammar again

Note: Don’t try to solve more than one production at a time. When you solve one production’s
error, use the tool to check to make sure you are not bringing new errors.

36

https://cyberzhg.github.io/toolbox/cfg2ll

result from the tool after modification, adapted to AtoCC
37

38

39

Tool

If you plan to use the table-driven approach, you will need a parse table. Of course you can

generate your own parse table, or put a proper grammar into a tool and it will give you the table.

We propose an online tool to do that:

http://hackingoff.com/compilers/ll-1-parser-generator

note: you need to use EPSILON to repersent ε

40

http://hackingoff.com/compilers/ll-1-parser-generator

Thanks

41

