
COMP 442 / 6421
Compiler Design
 Tutorial 5

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca
 Jashanjot Singh s_jashan@cs.concordia.ca

1

Content

- Symbol table

- Visitor pattern

- Example of symbol table generation with visitor pattern apply to AST

- Circular dependencies check

2

Symbol Table

3

What is a symbol table?

Symbol table is an important data structure used for scope manage, variable verification, type

checking and code generation ……..etc

- Why we can’t assign an integer value to an string variable?

- Why we can’t access variable declared in different scope?

- Why we know how many memory we need to allocate for a declared variable?

- … …

Because we have symbol table! What kind of information we should store in a symbol table?

4

How a symbol table looks like?

Top Level

Note: forget about the offset so far, will introduce in the next assignment 5

Secondary Level

6

Third Level

7

Visitor Pattern

8

Design Pattern

Design pattern is a general reusable solution to a commonly occurring problem when we design

a software.

One fact is that without design pattern, we can still write code and it may work properly but

with design pattern we can write more reusable, maintainable, robustic code.

Design pattern is something existing in the world not being invented by anyone but it becomes

popular after “GoF ” publish their book which conclude total 23 patterns.

Visitor pattern is one of these 23 cataloged into behavioral pattern.

9

Visitor Pattern

It should be possible to define a new operation for (some) classes of an object structure without

changing the classes.

When new operations are needed frequently (visit node in the AST) and the object structure

consists of many unrelated classes, it's inflexible to add new subclasses each time a new

operation is required.

Sum up the demand up (for the project)

1. Want to visit the AST nodes for different purpose (execute different operation on the same node)
2. Don’t want to change the structure of the AST Node (hard to maintain, easy to mess up)

10

Visitor Pattern

11

Visitor Pattern

12

Visitor Pattern

Theoretical Level

- Visitor
- ConcreteVisitor

- Element
- ConreteElement

Map to our project

- Visitor
- SymbolTableGeneratoinVisitor
- TypeCheckingVisitor
- CodeGenerationVisitor

- AstNode
- ProgNode
- ClassNode
- ………...

13

Example

14

Useful facts

According to our grammar given in assignment 2:

1. All classes must be declared before the main function (“program” function)

2. All functions (both free functions and member functions) must be defined before the main

function and after the classes declaration;

15

Step of symbol table creation

[first-pass] In-order traverse the AST (assume you already have an AST)

1. Create classes’ symbol table

2. Create functions’ symbol table
a. Free function we don’t do any link so far
b. Member function should be linked with its class

3. Create a global table for “program” function
a. Add all classes to the global table
b. Add all free function to the global table
c. Add the program function itself to the global table

16

17

18

Circular Dependencies

19

What is circular dependencies?

Assume you have two class: A and B

class A class B

{ {

B b; A a;

} }

How can you know the size of A or the size of B?

(size → how many memory you need for each object of type A or type B)

In real world programming language like C/C++, the solution for that problem is we are using

pointer instead of object.

20

Example (1)

Assume in your source file, you have the following classes (arrow means dependency):

class A : B class C : D, E class D : E class E : C

{ { { {

B b … … … … … ...

} } } }

21

Example (2)

class A : B class C : D, E class D : E class E : C

{ { { {

B b … … … … … ...

} } } }

If you have a circle in your graph, it means you have circular

dependencies.

Circular dependencies is not allowed in our project, since the language

we defined doesn’t have pointer.

22

Implementation (1)

Just from what we know now, it is obviously can be implemented as following:

1. Build the directed graph

2. Search the graph to see whether there is a circle

23

Implementation (2)

If you think the graph implementation is so complicated, we can have a list implementation

1. Build dependencies list for each class

2. Substitute the class with its dependencies you get later

3. Keep substitute until you can’t do it anymore

4. Check if there is repetition of any class

24

Example of Iist implementation

25

Thanks!
- You are not forced to use visitor pattern, but it is recommended and

you can get support from Prof. and TAs;
- The circular dependencies check will only be assigned a tiny point you

should have your own plan to determine implement which features;

26

