
COMP 442 / 6421
Compiler Design
Tutorial 6
Code Generation

Instructor: Dr. Joey Paquet paquet@cse.concordia.ca
TAs: Haotao Lai h_lai@encs.concordia.ca

1

Lab Instructor

Section: lab hours NNK M------ 20:30-22:20 H819

Name: Haotao Lai (Eric)

Office: EV 8.241

Email: h_lai@encs.concordia

Website: http://laihaotao.me/ta

http://laihaotao.me/ta

Content

- Virtual Machine

- Moon Machine

- Assignment Guide

Attention

There are two approaches to do the code generation:

● tag-based approach: cannot achieve all required functionalities, but it is simple

● stack-based approach: can achieve all requirement, but complicated

If you decide to achieve most of the functionalities you need to choose stack-based approach

but it will require a lot of work.

Virtual Machine

Virtual Machine

In computing, a virtual machine (VM) is an emulation of a computer system. Virtual machines are

based on computer architectures and provide functionality of a physical computer.

In computing, an emulator is hardware or software that enables one computer system (called

the host) to behave like another computer system (called the guest).

Two kinds of VM:

- System virtual machines

- Process virtual machines

Java Virtual Machine

The Java virtual machine is an abstract (virtual) computer defined by a specification. It was

designed to provide a platform-independent environment for the Java bytecode execution. By

this definition, it is a process virtual machine.

We will take JVM as an example to see how it work and try to get some institutions for our

assignment 4.

Java Runtime Area

Method Area: store the loaded class objects

Heap Area: store the instance of the class objects

Native Method Stack: method execution stack provided by the OS

Stack Area: Java defined method execution stack

Program Counter: point to the address of next instruction

In our assignment, we don’t have pointer and we don’t worry about platform independent so we

don’t need method area, heap and native method stack.

Javac

Java code (left) and it corresponding bytecode (right)

Class Loading Procedure

Javap

Constant pool is like symbol table in our case, but it is more complicated than ours.

Javap

Javap

Moon Machine

Background

- The MOON processor is wrote by Dr. Peter Grogono, the last

modification is on 30 January 1995;

- It is a kind of “virtual machine” we used to run our generated

code (assembly language)

- You can get the source code of Moon in the bottom of the course

website

- You need to have the very basic idea of assembly language

How to compile MOON?

1. You need to have a C compiler (eg. gcc)

2. Download the source code and unzip it

3. Open Terminal, change your working directory to where you put the source code

4. Compile it using the very basic compile command

For example, if you are using gcc, just type the following command in the terminal:

gcc [-o executable_file_name] moon.c

If you don’t specify the name, the executable will be named “a” in Unix, Linux or macOS.

Note: there is a PDF file accompanying with the source code, you are strongly suggested to read that file before you ask any question.

- A set of instructions

- A whole blank addressable virtual (simulated) memory
- Total 16 simulated registers
- A program counter

What Moon provides you?

How to use MOON?

There are 4 types of instruction:
1. Data access instructions
2. Arithmetic instructions
3. Input and output instructions
4. Control instructions

Terminology
- M

8
[K]: it denotes the byte stored at address K;

- M
32

[K]: it denotes the word stored at address K, K + 1, K + 2 and K + 3;

- An address is aligned if it is a multiple of 4;

- An address is legal if the address byte exists;

- The name PC denotes the program counter;

- The name R0, R1, … denotes the registers;

- The symbol ← denotes data transfer;

Note: the slide cannot show all instructions provided by MOON, please consult the documentation for more detailed !

Data Access Instructions

Take load word as an example:

R(i) ← 32 M
32

[R(j) + K] means take one word data stored in the address (R(j) + K) and put it into
register R(i)

where K in the range of [-16384, 16384)

Arithmetic Instructions

There are two types of arithmetic instructions:

1. R (i) ← R (j) + R (k), sum up the second and third register’s value and put the result into

the first register;

2. R (i) ← R (j) + k, sum up the second register’s value and the third value then put the result

into the first register;

We call all productions like the second one shown above “instruction with immediate operand”.

Arithmetic Instructions

- the logical operation operate on each bit of the word
- the comparison operator store result either “1” (true) or “0” (false)
- in the right side table, the operand K is a signed 16-bit quantity, negative numbers like -1 is interpreted as -1 not 65535

Input and Output Instructions

This two instructions are useful when you try to out the result of your program

to show it really worked during the final demo.

Control Instructions

- when you use branch, remember to set the PC (program counter) correctly

- jump instruction will be useful when you generate function code, you need to store the

return address properly

Code Generation
Tag-based

Tag-based Approach

The way to do it is straightforward and simple, for each variable you allocate a memory for it and

associate it with a unique tag which is stored in the symbol table.

Next time, when you want to access this variable (in-memory location) you can just get its

address by using that predefined tag in your table.

Code Generation
Stack-based

The key of code generation → offset

Recall

- How can you know whether a variable has been declared or not when you try to use it ?

- How many column you have in your symbol table ? What do they use for ?

Offset

- It represent how far a variable away from a base address;

- For example, a member variable of a class, offset of the variable means how far this

variable’s first address away from the first address of the class;

In order to achieve code generation:

- Add a new column to your symbol table → offset

- Calculate the offset of each data type when you add that entry into your table

Offset Example → the fourth column

Stack Mechanism

What is the stack?

The stack we talk about here is not the real “data structure stack”. It is a

function invocation stack. When a function being called, its frame will be

pushed into the stack and when the function return the corresponding

frame will be popped out.

In our case, we treat the MOON’s memory as a stack.

Stack-based Function Call Mechanism

Stack-based Function Call Mechanism

How you can know where you should put
a, b, c and how to locate them?

Remember we have offset!

offset → the distance from the variable cell to the frame pointer (current function’s base

address).

stack pointer → where the new function frame should be put.

name offset

a 0

b 4

c 8

Stack-based Function Call Mechanism

Function Call Mechanism
further considerations

● how to pass the parameter into the new function?
● where should frame and stack pointer go when the executing function is done?
● how to refer to the data member inside a member function?
● how to pass the return value back to the caller function?
● etc … …

Example
source code → assembly code

Reference

- https://en.wikipedia.org/wiki/Virtual_machine

- https://en.wikipedia.org/wiki/Emulator

- https://blogitwithsatyam.com/2018/06/19/jvm-architecture-in-depth/

- http://laihaotao.me/2018/04/28/jvm-classfile.html

https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Emulator
https://blogitwithsatyam.com/2018/06/19/jvm-architecture-in-depth/
http://laihaotao.me/2018/04/28/jvm-classfile.html

